基于连续统随机簇点过程的新型计算机实验设计

IF 0.7 Q2 MATHEMATICS
Hichem Elmossaoui, N. Oukid
{"title":"基于连续统随机簇点过程的新型计算机实验设计","authors":"Hichem Elmossaoui, N. Oukid","doi":"10.28924/2291-8639-21-2023-51","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for building computer experiment designs using the continuum random cluster point process, also referred to as the connected component Markov point process. Our method involves generating designs through the Markov Chain Monte Carlo method (MCMC) and the Random Walk Metropolis Hastings algorithm (RWMH algorithm), which can be easily scaled to meet various objectives. We have conducted a comprehensive study on the convergence of the Markov chain and compared our approach with existing computer experiment designs. Overall, our approach offers a novel and flexible solution for constructing computer experiment designs.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Computer Experiment Designs Using Continuum Random Cluster Point Process\",\"authors\":\"Hichem Elmossaoui, N. Oukid\",\"doi\":\"10.28924/2291-8639-21-2023-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for building computer experiment designs using the continuum random cluster point process, also referred to as the connected component Markov point process. Our method involves generating designs through the Markov Chain Monte Carlo method (MCMC) and the Random Walk Metropolis Hastings algorithm (RWMH algorithm), which can be easily scaled to meet various objectives. We have conducted a comprehensive study on the convergence of the Markov chain and compared our approach with existing computer experiment designs. Overall, our approach offers a novel and flexible solution for constructing computer experiment designs.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的方法来构建计算机实验设计,使用连续随机聚类点过程,也称为连接分量马尔可夫点过程。我们的方法包括通过Markov Chain Monte Carlo方法(MCMC)和Random Walk Metropolis Hastings算法(RWMH算法)生成设计,这些算法可以很容易地进行缩放以满足各种目标。我们对马尔可夫链的收敛性进行了全面的研究,并将我们的方法与现有的计算机实验设计进行了比较。总之,我们的方法为构建计算机实验设计提供了一种新颖而灵活的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Computer Experiment Designs Using Continuum Random Cluster Point Process
In this paper, we propose a new approach for building computer experiment designs using the continuum random cluster point process, also referred to as the connected component Markov point process. Our method involves generating designs through the Markov Chain Monte Carlo method (MCMC) and the Random Walk Metropolis Hastings algorithm (RWMH algorithm), which can be easily scaled to meet various objectives. We have conducted a comprehensive study on the convergence of the Markov chain and compared our approach with existing computer experiment designs. Overall, our approach offers a novel and flexible solution for constructing computer experiment designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信