X. W. Chen, LP Cai, D. F. Zhang, M. Li, Y. Ran, W. Ping
{"title":"TC4钛合金表面CeO2掺杂MAO涂层的高温氧化行为","authors":"X. W. Chen, LP Cai, D. F. Zhang, M. Li, Y. Ran, W. Ping","doi":"10.1680/jsuin.22.00033","DOIUrl":null,"url":null,"abstract":"To improve the surface micropores and high-temperature oxidation resistance of micro-arc oxidation (MAO) coating on TC4 titanium alloy, cerium dioxide (CeO2) particles were introduced into the electrolyte to prepare MAO composite coatings with different CeO2 content. X-ray diffractometer, scanning electron microscope and multifunctional material surface performance tester were used to analyze the phase composition, surface morphology and bonding force of the samples. TC4 substrate, undoped MAO sample and optimally doped MAO sample were oxidized at 650°C, 750°C and 850°C respectively. The results show that the best doped MAO samples show excellent high-temperature oxidation resistance at three temperatures. Compared with the undoped MAO sample, the maximum oxidation weight gain per unit area of the optimally doped MAO sample decreased by 10.8%, 19.6% and 22.1%, respectively. This is mainly because the thickness, hardness and adhesion of MAO coating are all increased by doping CeO2 particles, and a dense protective layer can also be formed on the surface of TC4 substrate. The invasion of oxygen medium is effectively prevented. In this research work, the optimal addition amount of CeO2 is 6 g/L.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-temperature oxidation behavior of CeO2 doped MAO coatings on TC4 titanium alloy\",\"authors\":\"X. W. Chen, LP Cai, D. F. Zhang, M. Li, Y. Ran, W. Ping\",\"doi\":\"10.1680/jsuin.22.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the surface micropores and high-temperature oxidation resistance of micro-arc oxidation (MAO) coating on TC4 titanium alloy, cerium dioxide (CeO2) particles were introduced into the electrolyte to prepare MAO composite coatings with different CeO2 content. X-ray diffractometer, scanning electron microscope and multifunctional material surface performance tester were used to analyze the phase composition, surface morphology and bonding force of the samples. TC4 substrate, undoped MAO sample and optimally doped MAO sample were oxidized at 650°C, 750°C and 850°C respectively. The results show that the best doped MAO samples show excellent high-temperature oxidation resistance at three temperatures. Compared with the undoped MAO sample, the maximum oxidation weight gain per unit area of the optimally doped MAO sample decreased by 10.8%, 19.6% and 22.1%, respectively. This is mainly because the thickness, hardness and adhesion of MAO coating are all increased by doping CeO2 particles, and a dense protective layer can also be formed on the surface of TC4 substrate. The invasion of oxygen medium is effectively prevented. In this research work, the optimal addition amount of CeO2 is 6 g/L.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.22.00033\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.00033","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-temperature oxidation behavior of CeO2 doped MAO coatings on TC4 titanium alloy
To improve the surface micropores and high-temperature oxidation resistance of micro-arc oxidation (MAO) coating on TC4 titanium alloy, cerium dioxide (CeO2) particles were introduced into the electrolyte to prepare MAO composite coatings with different CeO2 content. X-ray diffractometer, scanning electron microscope and multifunctional material surface performance tester were used to analyze the phase composition, surface morphology and bonding force of the samples. TC4 substrate, undoped MAO sample and optimally doped MAO sample were oxidized at 650°C, 750°C and 850°C respectively. The results show that the best doped MAO samples show excellent high-temperature oxidation resistance at three temperatures. Compared with the undoped MAO sample, the maximum oxidation weight gain per unit area of the optimally doped MAO sample decreased by 10.8%, 19.6% and 22.1%, respectively. This is mainly because the thickness, hardness and adhesion of MAO coating are all increased by doping CeO2 particles, and a dense protective layer can also be formed on the surface of TC4 substrate. The invasion of oxygen medium is effectively prevented. In this research work, the optimal addition amount of CeO2 is 6 g/L.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.