{"title":"正态均值最小风险固定宽度置信区间(MRFWCI)估计问题的一个新公式及其示例和模拟:在空气质量数据中的应用","authors":"N. Mukhopadhyay, Swathi Venkatesan","doi":"10.1080/07474946.2022.2070214","DOIUrl":null,"url":null,"abstract":"Abstract Research on classical fixed-width confidence interval (FWCI) estimation problems for a normal mean when the variance remains unknown have steadily moved along under a zero-one loss function. On the other hand, minimum risk point estimation (MRPE) problems have grown largely under a squared error loss function plus sampling cost. However, the FWCI problems customarily do not take into account any sampling cost in their formulations. This fundamental difference between the two treatments has led the literature on the FWCI and MRPE problems to grow in multiple directions in their own separate ways from one another. In this article, we introduce a new formulation combining both MRPE and FWCI methodologies with desired asymptotic first-order (Theorems 2.1–2.2) and asymptotic second-order characteristics (Theorem 2.3) under a single unified structure, allowing us to develop a genuine minimum risk fixed-width confidence interval (MRFWCI) estimation strategy. Fruitful ideas are proposed by incorporating illustrations from purely sequential and other multistage MRFWCI problems with an explicit presence of a cost function incurred due to sampling. We supplement the general theory and methodology by means of illustrations and analyses from simulated data along with applications to air quality data.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"41 1","pages":"241 - 274"},"PeriodicalIF":0.6000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new formulation of minimum risk fixed-width confidence interval (MRFWCI) estimation problems for a normal mean with illustrations and simulations: Applications to air quality data\",\"authors\":\"N. Mukhopadhyay, Swathi Venkatesan\",\"doi\":\"10.1080/07474946.2022.2070214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Research on classical fixed-width confidence interval (FWCI) estimation problems for a normal mean when the variance remains unknown have steadily moved along under a zero-one loss function. On the other hand, minimum risk point estimation (MRPE) problems have grown largely under a squared error loss function plus sampling cost. However, the FWCI problems customarily do not take into account any sampling cost in their formulations. This fundamental difference between the two treatments has led the literature on the FWCI and MRPE problems to grow in multiple directions in their own separate ways from one another. In this article, we introduce a new formulation combining both MRPE and FWCI methodologies with desired asymptotic first-order (Theorems 2.1–2.2) and asymptotic second-order characteristics (Theorem 2.3) under a single unified structure, allowing us to develop a genuine minimum risk fixed-width confidence interval (MRFWCI) estimation strategy. Fruitful ideas are proposed by incorporating illustrations from purely sequential and other multistage MRFWCI problems with an explicit presence of a cost function incurred due to sampling. We supplement the general theory and methodology by means of illustrations and analyses from simulated data along with applications to air quality data.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"41 1\",\"pages\":\"241 - 274\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2022.2070214\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2022.2070214","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A new formulation of minimum risk fixed-width confidence interval (MRFWCI) estimation problems for a normal mean with illustrations and simulations: Applications to air quality data
Abstract Research on classical fixed-width confidence interval (FWCI) estimation problems for a normal mean when the variance remains unknown have steadily moved along under a zero-one loss function. On the other hand, minimum risk point estimation (MRPE) problems have grown largely under a squared error loss function plus sampling cost. However, the FWCI problems customarily do not take into account any sampling cost in their formulations. This fundamental difference between the two treatments has led the literature on the FWCI and MRPE problems to grow in multiple directions in their own separate ways from one another. In this article, we introduce a new formulation combining both MRPE and FWCI methodologies with desired asymptotic first-order (Theorems 2.1–2.2) and asymptotic second-order characteristics (Theorem 2.3) under a single unified structure, allowing us to develop a genuine minimum risk fixed-width confidence interval (MRFWCI) estimation strategy. Fruitful ideas are proposed by incorporating illustrations from purely sequential and other multistage MRFWCI problems with an explicit presence of a cost function incurred due to sampling. We supplement the general theory and methodology by means of illustrations and analyses from simulated data along with applications to air quality data.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.