度量测度空间中凸积分泛函极小子的局部有界性

Pub Date : 2020-05-06 DOI:10.7146/math.scand.a-116244
Huiju Wang, P. Niu
{"title":"度量测度空间中凸积分泛函极小子的局部有界性","authors":"Huiju Wang, P. Niu","doi":"10.7146/math.scand.a-116244","DOIUrl":null,"url":null,"abstract":"In this paper we consider the convex integral functional I:=∫ΩΦ(gu)dμ in the metric measure space (X,d,μ), where X is a set, d is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of X, u belongs to the Orlicz-Sobolev space N1,Φ(Ω), Φ is an N-function satisfying the Δ2-condition, gu is the minimal Φ-weak upper gradient of u. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that (X,d,μ) satisfies the (1,1)-Poincare inequality. The result of this paper can be applied to the Carnot-Caratheodory space spanned by vector fields satisfying Hormander's condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local boundedness for minimizers of convex integral functionals in metric measure spaces\",\"authors\":\"Huiju Wang, P. Niu\",\"doi\":\"10.7146/math.scand.a-116244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the convex integral functional I:=∫ΩΦ(gu)dμ in the metric measure space (X,d,μ), where X is a set, d is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of X, u belongs to the Orlicz-Sobolev space N1,Φ(Ω), Φ is an N-function satisfying the Δ2-condition, gu is the minimal Φ-weak upper gradient of u. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that (X,d,μ) satisfies the (1,1)-Poincare inequality. The result of this paper can be applied to the Carnot-Caratheodory space spanned by vector fields satisfying Hormander's condition.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-116244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-116244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑度量测度空间(X,d,μ)中的凸积分泛函I:=ŞΩΦ(gu)dμ,其中X是集合,d是度量,µ是满足加倍条件的Borel正则测度,Ω是X的有界开子集,u属于Orlicz-Sobolev空间N1,Φ(Ω),Φ是满足Δ2-条件的N函数,gu是u的最小Φ-弱上梯度。通过改进欧几里得空间中度量设置的对应方法,在(X,d,μ)满足(1,1)-庞加莱不等式的假设下,建立了凸积分泛函的极小子的局部有界性。本文的结果可应用于满足Hormander条件的向量场所跨越的Carnot-Caratheodory空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local boundedness for minimizers of convex integral functionals in metric measure spaces
In this paper we consider the convex integral functional I:=∫ΩΦ(gu)dμ in the metric measure space (X,d,μ), where X is a set, d is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of X, u belongs to the Orlicz-Sobolev space N1,Φ(Ω), Φ is an N-function satisfying the Δ2-condition, gu is the minimal Φ-weak upper gradient of u. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that (X,d,μ) satisfies the (1,1)-Poincare inequality. The result of this paper can be applied to the Carnot-Caratheodory space spanned by vector fields satisfying Hormander's condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信