{"title":"模块化球形机器人自重构策略研究","authors":"Hanxu Sun, Mingzhe Li, Jingzhou Song, Yun Wang","doi":"10.1177/17298806221081665","DOIUrl":null,"url":null,"abstract":"Self-reconfigurable robot is a complex system composed of multiple modular robots. Aiming at high efficiency and low energy consumption of self-reconfigurable robot configuration transformation, a self-reconfiguration strategy based on module mapping of the common parts is proposed. This strategy describes the configuration of the robot in the form of a graph, and a method to determine the central node of configuration is proposed. The central node module as the starting node for comparison of different configurations, and the common part between the two configurations is reserved. Then the module closest to the target module is searched, the target configuration is reconfigured from the inside to the outside with the minimum energy consumption constraint. Finally, based on the experiment results, compared with other self-reconfiguration strategies, the proposed self-reconfiguration strategy reduces the times of reconfiguration operations and improves the reconfiguration efficiency.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on self-reconfiguration strategy of modular spherical robot\",\"authors\":\"Hanxu Sun, Mingzhe Li, Jingzhou Song, Yun Wang\",\"doi\":\"10.1177/17298806221081665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-reconfigurable robot is a complex system composed of multiple modular robots. Aiming at high efficiency and low energy consumption of self-reconfigurable robot configuration transformation, a self-reconfiguration strategy based on module mapping of the common parts is proposed. This strategy describes the configuration of the robot in the form of a graph, and a method to determine the central node of configuration is proposed. The central node module as the starting node for comparison of different configurations, and the common part between the two configurations is reserved. Then the module closest to the target module is searched, the target configuration is reconfigured from the inside to the outside with the minimum energy consumption constraint. Finally, based on the experiment results, compared with other self-reconfiguration strategies, the proposed self-reconfiguration strategy reduces the times of reconfiguration operations and improves the reconfiguration efficiency.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221081665\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221081665","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Research on self-reconfiguration strategy of modular spherical robot
Self-reconfigurable robot is a complex system composed of multiple modular robots. Aiming at high efficiency and low energy consumption of self-reconfigurable robot configuration transformation, a self-reconfiguration strategy based on module mapping of the common parts is proposed. This strategy describes the configuration of the robot in the form of a graph, and a method to determine the central node of configuration is proposed. The central node module as the starting node for comparison of different configurations, and the common part between the two configurations is reserved. Then the module closest to the target module is searched, the target configuration is reconfigured from the inside to the outside with the minimum energy consumption constraint. Finally, based on the experiment results, compared with other self-reconfiguration strategies, the proposed self-reconfiguration strategy reduces the times of reconfiguration operations and improves the reconfiguration efficiency.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.