基于Bratteli图和路径空间测度的图的调和分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Bezuglyi, P. Jorgensen
{"title":"基于Bratteli图和路径空间测度的图的调和分析","authors":"S. Bezuglyi, P. Jorgensen","doi":"10.4064/dm826-12-2021","DOIUrl":null,"url":null,"abstract":"The past decade has seen a flourishing of advances in harmonic analysis of graphs. They lie at the crossroads of graph theory and such analytical tools as graph Laplacians, Markov processes and associated boundaries, analysis of path-space, harmonic analysis, dynamics, and tail-invariant measures. Motivated by recent advances for the special case of Bratteli diagrams, our present focus will be on those graph systems $G$ with the property that the sets of vertices $V$ and edges $E$ admit discrete level structures. A choice of discrete levels in turn leads to new and intriguing discrete-time random-walk models. \nOur main extension (which greatly expands the earlier analysis of Bratteli diagrams) is the case when the levels in the graph system $G$ under consideration are now allowed to be standard measure spaces. Hence, in the measure framework, we must deal with systems of transition probabilities, as opposed to incidence matrices (for the traditional Bratteli diagrams). \nThe paper is divided into two parts, (i) the special case when the levels are countable discrete systems, and (ii) the (non-atomic) measurable category, i.e., when each level is a prescribed measure space with standard Borel structure. The study of the two cases together is motivated in part by recent new results on graph-limits. Our results depend on a new analysis of certain duality systems for operators in Hilbert space; specifically, one dual system of operator for each level. We prove new results in both cases, (i) and (ii); and we further stress both similarities, and differences, between results and techniques involved in the two cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Harmonic analysis on graphs via Bratteli diagrams and path-space measures\",\"authors\":\"S. Bezuglyi, P. Jorgensen\",\"doi\":\"10.4064/dm826-12-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past decade has seen a flourishing of advances in harmonic analysis of graphs. They lie at the crossroads of graph theory and such analytical tools as graph Laplacians, Markov processes and associated boundaries, analysis of path-space, harmonic analysis, dynamics, and tail-invariant measures. Motivated by recent advances for the special case of Bratteli diagrams, our present focus will be on those graph systems $G$ with the property that the sets of vertices $V$ and edges $E$ admit discrete level structures. A choice of discrete levels in turn leads to new and intriguing discrete-time random-walk models. \\nOur main extension (which greatly expands the earlier analysis of Bratteli diagrams) is the case when the levels in the graph system $G$ under consideration are now allowed to be standard measure spaces. Hence, in the measure framework, we must deal with systems of transition probabilities, as opposed to incidence matrices (for the traditional Bratteli diagrams). \\nThe paper is divided into two parts, (i) the special case when the levels are countable discrete systems, and (ii) the (non-atomic) measurable category, i.e., when each level is a prescribed measure space with standard Borel structure. The study of the two cases together is motivated in part by recent new results on graph-limits. Our results depend on a new analysis of certain duality systems for operators in Hilbert space; specifically, one dual system of operator for each level. We prove new results in both cases, (i) and (ii); and we further stress both similarities, and differences, between results and techniques involved in the two cases.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm826-12-2021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm826-12-2021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年里,图的调和分析取得了蓬勃发展。它们位于图论和诸如图拉普拉斯算子、马尔可夫过程和相关边界、路径空间分析、调和分析、动力学和尾不变测度等分析工具的十字路口。受Bratteli图特例的最新进展的启发,我们现在的重点将放在那些具有顶点集$V$和边集$E$允许离散级结构的性质的图系统$G$上。离散级别的选择反过来又产生了新的有趣的离散时间随机行走模型。我们的主要扩展(极大地扩展了早期对Bratteli图的分析)是当所考虑的图系统$G$中的级别现在被允许为标准度量空间时的情况。因此,在度量框架中,我们必须处理转移概率系统,而不是关联矩阵(对于传统的Bratteli图)。本文分为两部分,(i)当能级是可数离散系统时的特殊情况,以及(ii)(非原子)可测范畴,即当每个能级都是具有标准Borel结构的规定测度空间时。将这两种情况放在一起研究的部分动机是最近关于图极限的新结果。我们的结果依赖于对Hilbert空间中算子的某些对偶系统的新分析;具体地说,每个级别都有一个操作员的双重系统。我们在(i)和(ii)这两种情况下都证明了新的结果;我们进一步强调了这两个案例中涉及的结果和技术之间的相似性和差异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic analysis on graphs via Bratteli diagrams and path-space measures
The past decade has seen a flourishing of advances in harmonic analysis of graphs. They lie at the crossroads of graph theory and such analytical tools as graph Laplacians, Markov processes and associated boundaries, analysis of path-space, harmonic analysis, dynamics, and tail-invariant measures. Motivated by recent advances for the special case of Bratteli diagrams, our present focus will be on those graph systems $G$ with the property that the sets of vertices $V$ and edges $E$ admit discrete level structures. A choice of discrete levels in turn leads to new and intriguing discrete-time random-walk models. Our main extension (which greatly expands the earlier analysis of Bratteli diagrams) is the case when the levels in the graph system $G$ under consideration are now allowed to be standard measure spaces. Hence, in the measure framework, we must deal with systems of transition probabilities, as opposed to incidence matrices (for the traditional Bratteli diagrams). The paper is divided into two parts, (i) the special case when the levels are countable discrete systems, and (ii) the (non-atomic) measurable category, i.e., when each level is a prescribed measure space with standard Borel structure. The study of the two cases together is motivated in part by recent new results on graph-limits. Our results depend on a new analysis of certain duality systems for operators in Hilbert space; specifically, one dual system of operator for each level. We prove new results in both cases, (i) and (ii); and we further stress both similarities, and differences, between results and techniques involved in the two cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信