{"title":"低弹性模量钛合金作为植入生物材料的研究进展","authors":"Kaixuan Liu, L. Yin, Xu Lin, S. Liang","doi":"10.21926/rpm.2202008","DOIUrl":null,"url":null,"abstract":"Biomaterials have always been the focus of material scientists and engineers. Titanium and its alloys have favorable properties, such as high strength, low density, good corrosion resistance, non-toxicity, low elastic modulus, biocompatibility, etc. Thus, Ti alloys have received much attention from scientists and engineers who work with biomaterials. Among these properties, the elastic modulus is a very important property for implant biomaterials because it avoids the “stress shielding” effect. In this study, we summarized low elastic modulus titanium alloys, which have great application potential for implant biomaterials. The major series of titanium alloys with low elastic modulus, including TiNb-based, TiMo-based, and TiZr-based series of titanium alloys, were discussed. The research status and the possible factors related to the low elastic modulus of these major titanium alloys were analyzed. Finally, the development prospects of the above series of low elastic modulus titanium alloys were compared, and the future direction of low elastic modulus Ti alloys as biomaterials was proposed.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of Low Elastic Modulus Titanium Alloys as Implant Biomaterials\",\"authors\":\"Kaixuan Liu, L. Yin, Xu Lin, S. Liang\",\"doi\":\"10.21926/rpm.2202008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomaterials have always been the focus of material scientists and engineers. Titanium and its alloys have favorable properties, such as high strength, low density, good corrosion resistance, non-toxicity, low elastic modulus, biocompatibility, etc. Thus, Ti alloys have received much attention from scientists and engineers who work with biomaterials. Among these properties, the elastic modulus is a very important property for implant biomaterials because it avoids the “stress shielding” effect. In this study, we summarized low elastic modulus titanium alloys, which have great application potential for implant biomaterials. The major series of titanium alloys with low elastic modulus, including TiNb-based, TiMo-based, and TiZr-based series of titanium alloys, were discussed. The research status and the possible factors related to the low elastic modulus of these major titanium alloys were analyzed. Finally, the development prospects of the above series of low elastic modulus titanium alloys were compared, and the future direction of low elastic modulus Ti alloys as biomaterials was proposed.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2202008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2202008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Low Elastic Modulus Titanium Alloys as Implant Biomaterials
Biomaterials have always been the focus of material scientists and engineers. Titanium and its alloys have favorable properties, such as high strength, low density, good corrosion resistance, non-toxicity, low elastic modulus, biocompatibility, etc. Thus, Ti alloys have received much attention from scientists and engineers who work with biomaterials. Among these properties, the elastic modulus is a very important property for implant biomaterials because it avoids the “stress shielding” effect. In this study, we summarized low elastic modulus titanium alloys, which have great application potential for implant biomaterials. The major series of titanium alloys with low elastic modulus, including TiNb-based, TiMo-based, and TiZr-based series of titanium alloys, were discussed. The research status and the possible factors related to the low elastic modulus of these major titanium alloys were analyzed. Finally, the development prospects of the above series of low elastic modulus titanium alloys were compared, and the future direction of low elastic modulus Ti alloys as biomaterials was proposed.