计算量子平面上的各种模块

Q3 Mathematics
Yifeng Huang
{"title":"计算量子平面上的各种模块","authors":"Yifeng Huang","doi":"10.5802/alco.230","DOIUrl":null,"url":null,"abstract":"Let ζ be a fixed nonzero element in a finite field Fq with q elements. In this article, we count the number of pairs (A,B) of n × n matrices over Fq satisfying AB = ζBA by giving a generating function. This generalizes a generating function of Feit and Fine that counts pairs of commuting matrices. Our result can be also viewed as the point count of the variety of modules over the quantum plane xy = ζyx, whose geometry was described by Chen and Lu.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counting on the variety of modules over the quantum plane\",\"authors\":\"Yifeng Huang\",\"doi\":\"10.5802/alco.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ζ be a fixed nonzero element in a finite field Fq with q elements. In this article, we count the number of pairs (A,B) of n × n matrices over Fq satisfying AB = ζBA by giving a generating function. This generalizes a generating function of Feit and Fine that counts pairs of commuting matrices. Our result can be also viewed as the point count of the variety of modules over the quantum plane xy = ζyx, whose geometry was described by Chen and Lu.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设ζ是具有q个元素的有限域Fq中的一个固定非零元素。在本文中,我们通过给出一个生成函数来计算Fq上满足AB=ζBA的n×n矩阵的对(A,B)的数量。这推广了Feit和Fine的一个计算交换矩阵对的生成函数。我们的结果也可以看作是量子平面xy=ζyx上各种模的点计数,其几何结构由Chen和Lu描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting on the variety of modules over the quantum plane
Let ζ be a fixed nonzero element in a finite field Fq with q elements. In this article, we count the number of pairs (A,B) of n × n matrices over Fq satisfying AB = ζBA by giving a generating function. This generalizes a generating function of Feit and Fine that counts pairs of commuting matrices. Our result can be also viewed as the point count of the variety of modules over the quantum plane xy = ζyx, whose geometry was described by Chen and Lu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信