复制几何上的费米子与$\Theta$-$\Theta$关系

IF 1.2 3区 数学 Q1 MATHEMATICS
S. Mukhi, S. Murthy
{"title":"复制几何上的费米子与$\\Theta$-$\\Theta$关系","authors":"S. Mukhi, S. Murthy","doi":"10.4310/CNTP.2019.V13.N1.A8","DOIUrl":null,"url":null,"abstract":"In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\\theta$-functions. This arises by comparing two different ways of computing the \\nth \\Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fermions on replica geometries and the $\\\\Theta$ - $\\\\theta$ relation\",\"authors\":\"S. Mukhi, S. Murthy\",\"doi\":\"10.4310/CNTP.2019.V13.N1.A8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\\\\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\\\\theta$-functions. This arises by comparing two different ways of computing the \\\\nth \\\\Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\\\\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2019.V13.N1.A8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N1.A8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在arXiv:1706:09426中,我们推测并证明了亏格$n$的特殊黎曼曲面的Siegel$\Theta$-常数与Jacobi$\Theta$-函数的乘积之间的恒等式。这是通过比较在有限温度下计算自由费米子的仁义熵的两种不同方法得出的。在这里,我们证明了对于$n=2$,恒等式是由于双分支黎曼曲面的Fay的旧结果的结果。对于$n>2$,我们在恒等式的两侧提供特定零的详细匹配。这相当于$n=2$的恒等式的初等证明,而对于$n\ge3$,它为它提供了新的证据。我们解释了为什么额外零的存在使一般证明变得困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fermions on replica geometries and the $\Theta$ - $\theta$ relation
In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\theta$-functions. This arises by comparing two different ways of computing the \nth \Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信