{"title":"复制几何上的费米子与$\\Theta$-$\\Theta$关系","authors":"S. Mukhi, S. Murthy","doi":"10.4310/CNTP.2019.V13.N1.A8","DOIUrl":null,"url":null,"abstract":"In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\\theta$-functions. This arises by comparing two different ways of computing the \\nth \\Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fermions on replica geometries and the $\\\\Theta$ - $\\\\theta$ relation\",\"authors\":\"S. Mukhi, S. Murthy\",\"doi\":\"10.4310/CNTP.2019.V13.N1.A8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\\\\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\\\\theta$-functions. This arises by comparing two different ways of computing the \\\\nth \\\\Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\\\\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2019.V13.N1.A8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N1.A8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fermions on replica geometries and the $\Theta$ - $\theta$ relation
In arXiv:1706:09426 we conjectured and provided evidence for an identity between Siegel $\Theta$-constants for special Riemann surfaces of genus $n$ and products of Jacobi $\theta$-functions. This arises by comparing two different ways of computing the \nth \Renyi entropy of free fermions at finite temperature. Here we show that for $n=2$ the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For $n>2$ we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for $n=2$, while for $n\ge 3$ it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.