{"title":"开放量子系统的演化:时间尺度、随机过程和连续过程","authors":"Tarek Khalil, J. Richert","doi":"10.12743/quanta.v10i1.157","DOIUrl":null,"url":null,"abstract":"The study of the physical properties of open quantum systems is at the heart of many investigations, which aim to describe their dynamical evolution on theoretical ground and through physical realizations. Here, we develop a presentation of different aspects, which characterize these systems and confront different physical situations that can be realized leading to systems, which experience Markovian, non-Markovian, divisible or non-divisible interactions with the environments to which they are dynamically coupled. We aim to show how different approaches describe the evolution of quantum systems subject to different types of interactions with their environments.Quanta 2021; 10: 42–54.","PeriodicalId":37613,"journal":{"name":"Quanta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolution of Open Quantum Systems: Time Scales, Stochastic and Continuous Processes\",\"authors\":\"Tarek Khalil, J. Richert\",\"doi\":\"10.12743/quanta.v10i1.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the physical properties of open quantum systems is at the heart of many investigations, which aim to describe their dynamical evolution on theoretical ground and through physical realizations. Here, we develop a presentation of different aspects, which characterize these systems and confront different physical situations that can be realized leading to systems, which experience Markovian, non-Markovian, divisible or non-divisible interactions with the environments to which they are dynamically coupled. We aim to show how different approaches describe the evolution of quantum systems subject to different types of interactions with their environments.Quanta 2021; 10: 42–54.\",\"PeriodicalId\":37613,\"journal\":{\"name\":\"Quanta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quanta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12743/quanta.v10i1.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quanta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12743/quanta.v10i1.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Evolution of Open Quantum Systems: Time Scales, Stochastic and Continuous Processes
The study of the physical properties of open quantum systems is at the heart of many investigations, which aim to describe their dynamical evolution on theoretical ground and through physical realizations. Here, we develop a presentation of different aspects, which characterize these systems and confront different physical situations that can be realized leading to systems, which experience Markovian, non-Markovian, divisible or non-divisible interactions with the environments to which they are dynamically coupled. We aim to show how different approaches describe the evolution of quantum systems subject to different types of interactions with their environments.Quanta 2021; 10: 42–54.
QuantaArts and Humanities-History and Philosophy of Science
CiteScore
1.30
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊介绍:
Quanta is an open access academic journal publishing original research and review articles on foundations of quantum mechanics, mathematical physics and philosophy of science.