Geroch猜想的一个推广

IF 3.1 1区 数学 Q1 MATHEMATICS
Simon Brendle, Sven Hirsch, Florian Johne
{"title":"Geroch猜想的一个推广","authors":"Simon Brendle,&nbsp;Sven Hirsch,&nbsp;Florian Johne","doi":"10.1002/cpa.22137","DOIUrl":null,"url":null,"abstract":"<p>The Theorem of Bonnet–Myers implies that manifolds with topology <math>\n <semantics>\n <mrow>\n <msup>\n <mi>M</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$M^{n-1} \\times \\mathbb {S}^1$</annotation>\n </semantics></math> do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus <math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {T}^n$</annotation>\n </semantics></math> does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so-called <i>m</i>-intermediate curvature), and use stable weighted slicings to show that for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≤</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$n \\le 7$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>m</mi>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$1 \\le m \\le n-1$</annotation>\n </semantics></math> the manifolds <math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mi>n</mi>\n </msup>\n <mo>=</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mi>m</mi>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>T</mi>\n <mi>m</mi>\n </msup>\n </mrow>\n <annotation>$N^n = M^{n-m} \\times \\mathbb {T}^m$</annotation>\n </semantics></math> do not admit a metric of positive <i>m</i>-intermediate curvature.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A generalization of Geroch's conjecture\",\"authors\":\"Simon Brendle,&nbsp;Sven Hirsch,&nbsp;Florian Johne\",\"doi\":\"10.1002/cpa.22137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Theorem of Bonnet–Myers implies that manifolds with topology <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>M</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>$M^{n-1} \\\\times \\\\mathbb {S}^1$</annotation>\\n </semantics></math> do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus <math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {T}^n$</annotation>\\n </semantics></math> does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so-called <i>m</i>-intermediate curvature), and use stable weighted slicings to show that for <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≤</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$n \\\\le 7$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>m</mi>\\n <mo>≤</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$1 \\\\le m \\\\le n-1$</annotation>\\n </semantics></math> the manifolds <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mi>M</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>m</mi>\\n </mrow>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msup>\\n </mrow>\\n <annotation>$N^n = M^{n-m} \\\\times \\\\mathbb {T}^m$</annotation>\\n </semantics></math> do not admit a metric of positive <i>m</i>-intermediate curvature.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22137\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22137","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

Bonnet–Myers定理暗示了具有拓扑的流形不允许正Ricci曲率的度量,而Geroch猜想的分辨率暗示了环面不允许正标量曲率的度量。在这项工作中,我们引入了Ricci和标量曲率(称为m-中间曲率)之间的曲率插值的新概念,并使用稳定的加权切片来表明对于和流形不允许正m-中间弯曲的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of Geroch's conjecture

The Theorem of Bonnet–Myers implies that manifolds with topology M n 1 × S 1 $M^{n-1} \times \mathbb {S}^1$ do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus T n $\mathbb {T}^n$ does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so-called m-intermediate curvature), and use stable weighted slicings to show that for n 7 $n \le 7$ and 1 m n 1 $1 \le m \le n-1$ the manifolds N n = M n m × T m $N^n = M^{n-m} \times \mathbb {T}^m$ do not admit a metric of positive m-intermediate curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信