有限Kleinian群的Loxodromic Eisenstein级数

Pub Date : 2019-09-01 DOI:10.7169/FACM/1781
Y. Irie
{"title":"有限Kleinian群的Loxodromic Eisenstein级数","authors":"Y. Irie","doi":"10.7169/FACM/1781","DOIUrl":null,"url":null,"abstract":"We introduce an Eisenstein series associated to a loxodromic element of cofinite Kleinian groups, namely the loxodromic Eisenstein series, and study its fundamental properties. It is the analogue of the hyperbolic Eisenstein series for Fuchsian groups of the first kind. We prove the convergence and the differential equation associated to the Laplace-Beltrami operator. We also prove the precise spectral expansion associated to the Laplace-Beltrami operator. Furthermore, we derive the analytic continuation with the location of the possible poles and their residues from the spectral expansion.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Loxodromic Eisenstein series for cofinite Kleinian groups\",\"authors\":\"Y. Irie\",\"doi\":\"10.7169/FACM/1781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an Eisenstein series associated to a loxodromic element of cofinite Kleinian groups, namely the loxodromic Eisenstein series, and study its fundamental properties. It is the analogue of the hyperbolic Eisenstein series for Fuchsian groups of the first kind. We prove the convergence and the differential equation associated to the Laplace-Beltrami operator. We also prove the precise spectral expansion associated to the Laplace-Beltrami operator. Furthermore, we derive the analytic continuation with the location of the possible poles and their residues from the spectral expansion.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/FACM/1781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了一个与共晶Kleinian基团的一个氧致变色元素相关的艾森斯坦系列,即氧致变色艾森斯坦系列。并研究了它的基本性质。它类似于第一类傅氏群的双曲爱森斯坦级数。我们证明了拉普拉斯-贝尔特拉米算子的收敛性和微分方程。我们还证明了拉普拉斯-贝尔特拉米算子的精确谱展开。此外,我们从谱展开中导出了可能极点及其余数的位置的解析延拓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Loxodromic Eisenstein series for cofinite Kleinian groups
We introduce an Eisenstein series associated to a loxodromic element of cofinite Kleinian groups, namely the loxodromic Eisenstein series, and study its fundamental properties. It is the analogue of the hyperbolic Eisenstein series for Fuchsian groups of the first kind. We prove the convergence and the differential equation associated to the Laplace-Beltrami operator. We also prove the precise spectral expansion associated to the Laplace-Beltrami operator. Furthermore, we derive the analytic continuation with the location of the possible poles and their residues from the spectral expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信