Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang
{"title":"分级数据认知诊断评估的多元体模型","authors":"Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang","doi":"10.1080/15305058.2017.1396465","DOIUrl":null,"url":null,"abstract":"Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2017.1396465","citationCount":"10","resultStr":"{\"title\":\"A Polytomous Model of Cognitive Diagnostic Assessment for Graded Data\",\"authors\":\"Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang\",\"doi\":\"10.1080/15305058.2017.1396465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2017.1396465\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2017.1396465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2017.1396465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
A Polytomous Model of Cognitive Diagnostic Assessment for Graded Data
Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.