{"title":"具有不定势的分数阶Choquard方程基态的存在与集中","authors":"Wen Zhang, Shuai Yuan, Lixi Wen","doi":"10.1515/anona-2022-0255","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: ( − Δ ) s u + V ( x ) u = ∫ R N A ( ε y ) ∣ u ( y ) ∣ p ∣ x − y ∣ μ d y A ( ε x ) ∣ u ( x ) ∣ p − 2 u ( x ) , x ∈ R N , {\\left(-\\Delta )}^{s}u+V\\left(x)u=\\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}\\frac{A\\left(\\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\\mu }}{\\rm{d}}y\\right)A\\left(\\varepsilon x)| u\\left(x){| }^{p-2}u\\left(x),\\hspace{1em}x\\in {{\\mathbb{R}}}^{N}, where s ∈ ( 0 , 1 ) s\\in \\left(0,1) , N > 2 s N\\gt 2s , 0 < μ < 2 s 0\\lt \\mu \\lt 2s , 2 < p < 2 N − 2 μ N − 2 s 2\\lt p\\lt \\frac{2N-2\\mu }{N-2s} , and ε \\varepsilon is a positive parameter. Under some natural hypotheses on the potentials V V and A A , using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points of A A as ε → 0 \\varepsilon \\to 0 .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Existence and concentration of ground-states for fractional Choquard equation with indefinite potential\",\"authors\":\"Wen Zhang, Shuai Yuan, Lixi Wen\",\"doi\":\"10.1515/anona-2022-0255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: ( − Δ ) s u + V ( x ) u = ∫ R N A ( ε y ) ∣ u ( y ) ∣ p ∣ x − y ∣ μ d y A ( ε x ) ∣ u ( x ) ∣ p − 2 u ( x ) , x ∈ R N , {\\\\left(-\\\\Delta )}^{s}u+V\\\\left(x)u=\\\\left(\\\\mathop{\\\\int }\\\\limits_{{{\\\\mathbb{R}}}^{N}}\\\\frac{A\\\\left(\\\\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\\\\mu }}{\\\\rm{d}}y\\\\right)A\\\\left(\\\\varepsilon x)| u\\\\left(x){| }^{p-2}u\\\\left(x),\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{N}, where s ∈ ( 0 , 1 ) s\\\\in \\\\left(0,1) , N > 2 s N\\\\gt 2s , 0 < μ < 2 s 0\\\\lt \\\\mu \\\\lt 2s , 2 < p < 2 N − 2 μ N − 2 s 2\\\\lt p\\\\lt \\\\frac{2N-2\\\\mu }{N-2s} , and ε \\\\varepsilon is a positive parameter. Under some natural hypotheses on the potentials V V and A A , using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points of A A as ε → 0 \\\\varepsilon \\\\to 0 .\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0255\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0255","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 24
摘要
摘要本文研究了具有不定势的分数阶Choquard方程基态解的存在性和集中性:(−Δ)su+V(x)u=ŞR N A(εy)Şu(y)Ş^{s}u+V\left(x)u=\left^{p-2}u\left(x),\ hspace{1em}x\在{\mathbb{R}}^{N}中,其中s∈(0,1)s\in\left(0,0),N>2s N\gt 2s,0<μ<2s 0\lt\mu\lt 2s,2
Existence and concentration of ground-states for fractional Choquard equation with indefinite potential
Abstract This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: ( − Δ ) s u + V ( x ) u = ∫ R N A ( ε y ) ∣ u ( y ) ∣ p ∣ x − y ∣ μ d y A ( ε x ) ∣ u ( x ) ∣ p − 2 u ( x ) , x ∈ R N , {\left(-\Delta )}^{s}u+V\left(x)u=\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}\frac{A\left(\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\mu }}{\rm{d}}y\right)A\left(\varepsilon x)| u\left(x){| }^{p-2}u\left(x),\hspace{1em}x\in {{\mathbb{R}}}^{N}, where s ∈ ( 0 , 1 ) s\in \left(0,1) , N > 2 s N\gt 2s , 0 < μ < 2 s 0\lt \mu \lt 2s , 2 < p < 2 N − 2 μ N − 2 s 2\lt p\lt \frac{2N-2\mu }{N-2s} , and ε \varepsilon is a positive parameter. Under some natural hypotheses on the potentials V V and A A , using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points of A A as ε → 0 \varepsilon \to 0 .