Long Zhou, Yubin Lan, Jianqun Yu, Yang Wang, Dongxu Yan, Kai Sun, Wenjun Wang, Yulong Chen
{"title":"基于EEPA接触模型的土壤参数验证与标定","authors":"Long Zhou, Yubin Lan, Jianqun Yu, Yang Wang, Dongxu Yan, Kai Sun, Wenjun Wang, Yulong Chen","doi":"10.1007/s40571-023-00559-0","DOIUrl":null,"url":null,"abstract":"<div><p>The determination of parameters is a key issue in discrete element simulation and controls the accuracy and reliability of the simulation results. In this paper, a sandy loam soil with three water contents is studied and soil particles based on the EEPA model are modelled in three shapes (spheres, columns and Triangular pyramid) to accurately represent the actual soil particle. The sensitivity of the input parameters in the EEPA model is investigated by the Plackett–Burman test. The results show that the coefficient of static friction, coefficient of rolling friction and surface energy between soil particles have a highly significant effect on the angle of repose, and the coefficient of restitution has a significant effect on the angle of repose. The sensitivity parameters are calibrated by the central combination test, and the optimal combination of parameters is obtained. The accuracy of the parameters calibrated is validated by comparing the simulation results of the direct shear test with the actual test results. Therefore, the parameters calibrated satisfy both the flow and mechanical properties of the particles.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1295 - 1307"},"PeriodicalIF":2.8000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Validation and calibration of soil parameters based on EEPA contact model\",\"authors\":\"Long Zhou, Yubin Lan, Jianqun Yu, Yang Wang, Dongxu Yan, Kai Sun, Wenjun Wang, Yulong Chen\",\"doi\":\"10.1007/s40571-023-00559-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The determination of parameters is a key issue in discrete element simulation and controls the accuracy and reliability of the simulation results. In this paper, a sandy loam soil with three water contents is studied and soil particles based on the EEPA model are modelled in three shapes (spheres, columns and Triangular pyramid) to accurately represent the actual soil particle. The sensitivity of the input parameters in the EEPA model is investigated by the Plackett–Burman test. The results show that the coefficient of static friction, coefficient of rolling friction and surface energy between soil particles have a highly significant effect on the angle of repose, and the coefficient of restitution has a significant effect on the angle of repose. The sensitivity parameters are calibrated by the central combination test, and the optimal combination of parameters is obtained. The accuracy of the parameters calibrated is validated by comparing the simulation results of the direct shear test with the actual test results. Therefore, the parameters calibrated satisfy both the flow and mechanical properties of the particles.\\n</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"10 5\",\"pages\":\"1295 - 1307\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00559-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00559-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Validation and calibration of soil parameters based on EEPA contact model
The determination of parameters is a key issue in discrete element simulation and controls the accuracy and reliability of the simulation results. In this paper, a sandy loam soil with three water contents is studied and soil particles based on the EEPA model are modelled in three shapes (spheres, columns and Triangular pyramid) to accurately represent the actual soil particle. The sensitivity of the input parameters in the EEPA model is investigated by the Plackett–Burman test. The results show that the coefficient of static friction, coefficient of rolling friction and surface energy between soil particles have a highly significant effect on the angle of repose, and the coefficient of restitution has a significant effect on the angle of repose. The sensitivity parameters are calibrated by the central combination test, and the optimal combination of parameters is obtained. The accuracy of the parameters calibrated is validated by comparing the simulation results of the direct shear test with the actual test results. Therefore, the parameters calibrated satisfy both the flow and mechanical properties of the particles.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.