Shotgun宏基因组学揭示玉米根际重要农业微生物基因

IF 2 Q3 SOIL SCIENCE
Oluwadara Pelumi Omotayo, O. Igiehon, O. Babalola
{"title":"Shotgun宏基因组学揭示玉米根际重要农业微生物基因","authors":"Oluwadara Pelumi Omotayo, O. Igiehon, O. Babalola","doi":"10.3389/sjss.2022.10427","DOIUrl":null,"url":null,"abstract":"Genes possessed by microbes in the rhizosphere influence the metabolic activities that occur in this zone. Although the maize rhizosphere has been reported to be a hotspot of genes, these genes remain under-investigated. Hence, this study aimed at identifying putative microbial genes with plant beneficial functions in the underexplored maize rhizosphere microbiome using a shotgun metagenomics approach. Sampling was done at the flowering stage of the maize plants and both the rhizosphere and bulk soils were collected in triplicates. The metagenomes of the examined rhizosphere and bulk soils revealed genes involved in carbon fixation, nitrogen fixation, iron acquisition, heat and cold shock, phosphorus solubilization and utilization, sulfur cycling, and siderophore production. The beta diversity analysis showed significant variations (p < 0.05) in these genes across the examined rhizosphere and bulk soils which was further confirmed by the distinct separations between the samples as seen on the principal coordinate analysis (PCoA) plot. Contrarily, no significant difference was observed in diversity within the habitats (p = 0.99). The predominance of significant genes of agricultural importance such as the nifH, nifA, groES, and cspA in the rhizosphere metagenomes signifies that this region is endowed with beneficial organisms with potential for improving plant growth, mitigating stress, and reducing the effect of extreme temperatures, which can be optimized in developing biofertilizers. Therefore, the development of strategies that will help in cultivating these organisms, which are mostly unculturable, is encouraged. This would make them readily available for use as bio-inoculants and in other biotechnological applications.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microbial Genes of Agricultural Importance in Maize Rhizosphere Unveiled Through Shotgun Metagenomics\",\"authors\":\"Oluwadara Pelumi Omotayo, O. Igiehon, O. Babalola\",\"doi\":\"10.3389/sjss.2022.10427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genes possessed by microbes in the rhizosphere influence the metabolic activities that occur in this zone. Although the maize rhizosphere has been reported to be a hotspot of genes, these genes remain under-investigated. Hence, this study aimed at identifying putative microbial genes with plant beneficial functions in the underexplored maize rhizosphere microbiome using a shotgun metagenomics approach. Sampling was done at the flowering stage of the maize plants and both the rhizosphere and bulk soils were collected in triplicates. The metagenomes of the examined rhizosphere and bulk soils revealed genes involved in carbon fixation, nitrogen fixation, iron acquisition, heat and cold shock, phosphorus solubilization and utilization, sulfur cycling, and siderophore production. The beta diversity analysis showed significant variations (p < 0.05) in these genes across the examined rhizosphere and bulk soils which was further confirmed by the distinct separations between the samples as seen on the principal coordinate analysis (PCoA) plot. Contrarily, no significant difference was observed in diversity within the habitats (p = 0.99). The predominance of significant genes of agricultural importance such as the nifH, nifA, groES, and cspA in the rhizosphere metagenomes signifies that this region is endowed with beneficial organisms with potential for improving plant growth, mitigating stress, and reducing the effect of extreme temperatures, which can be optimized in developing biofertilizers. Therefore, the development of strategies that will help in cultivating these organisms, which are mostly unculturable, is encouraged. This would make them readily available for use as bio-inoculants and in other biotechnological applications.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2022.10427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2022.10427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

根际微生物所拥有的基因会影响该区域的代谢活动。尽管玉米根际已被报道为基因热点,但这些基因仍在研究中。因此,本研究旨在使用鸟枪宏基因组学方法,在未充分开发的玉米根际微生物组中鉴定具有植物有益功能的假定微生物基因。在玉米植株的开花期进行取样,根际土壤和大块土壤都以三份为单位进行收集。所检查的根际土壤和大块土壤的宏基因组揭示了与碳固定、氮固定、铁获取、冷热冲击、磷溶解和利用、硫循环和铁载体产生有关的基因。β多样性分析显示,这些基因在所检查的根际和大块土壤中存在显著差异(p<0.05),如主坐标分析(PCoA)图所示,样本之间的不同分离进一步证实了这一点。相反,栖息地内的多样性没有观察到显著差异(p=0.99)。具有重要农业意义的重要基因,如nifH、nifA、groES和cspA在根际宏基因组中占主导地位,这表明该地区具有改善植物生长、缓解压力、,以及减少极端温度的影响,这可以在开发生物肥料时进行优化。因此,鼓励制定有助于培养这些大多不可培养的生物的策略。这将使它们易于用作生物接种剂和其他生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial Genes of Agricultural Importance in Maize Rhizosphere Unveiled Through Shotgun Metagenomics
Genes possessed by microbes in the rhizosphere influence the metabolic activities that occur in this zone. Although the maize rhizosphere has been reported to be a hotspot of genes, these genes remain under-investigated. Hence, this study aimed at identifying putative microbial genes with plant beneficial functions in the underexplored maize rhizosphere microbiome using a shotgun metagenomics approach. Sampling was done at the flowering stage of the maize plants and both the rhizosphere and bulk soils were collected in triplicates. The metagenomes of the examined rhizosphere and bulk soils revealed genes involved in carbon fixation, nitrogen fixation, iron acquisition, heat and cold shock, phosphorus solubilization and utilization, sulfur cycling, and siderophore production. The beta diversity analysis showed significant variations (p < 0.05) in these genes across the examined rhizosphere and bulk soils which was further confirmed by the distinct separations between the samples as seen on the principal coordinate analysis (PCoA) plot. Contrarily, no significant difference was observed in diversity within the habitats (p = 0.99). The predominance of significant genes of agricultural importance such as the nifH, nifA, groES, and cspA in the rhizosphere metagenomes signifies that this region is endowed with beneficial organisms with potential for improving plant growth, mitigating stress, and reducing the effect of extreme temperatures, which can be optimized in developing biofertilizers. Therefore, the development of strategies that will help in cultivating these organisms, which are mostly unculturable, is encouraged. This would make them readily available for use as bio-inoculants and in other biotechnological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信