相对存在闭群的null

IF 0.7 Q2 MATHEMATICS
M. Shahryari
{"title":"相对存在闭群的null","authors":"M. Shahryari","doi":"10.22108/IJGT.2021.125453.1652","DOIUrl":null,"url":null,"abstract":"We prove that in every variety of $G$-groups‎, ‎every $G$-existentially closed element satisfies nullstellensatz for finite consistent systems of equations‎. ‎This will generalize  Theorem G of [J‎. ‎Algebra,  219 (1999) ‎16--79]‎. ‎As a result we see that every pair of $G$-existentially closed elements in an arbitrary variety of $G$-groups generate the same quasi-variety and if both of them are $q_{omega}$-compact‎, ‎they are geometrically equivalent‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nullstellensatz for relative existentially closed groups\",\"authors\":\"M. Shahryari\",\"doi\":\"10.22108/IJGT.2021.125453.1652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that in every variety of $G$-groups‎, ‎every $G$-existentially closed element satisfies nullstellensatz for finite consistent systems of equations‎. ‎This will generalize  Theorem G of [J‎. ‎Algebra,  219 (1999) ‎16--79]‎. ‎As a result we see that every pair of $G$-existentially closed elements in an arbitrary variety of $G$-groups generate the same quasi-variety and if both of them are $q_{omega}$-compact‎, ‎they are geometrically equivalent‎.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2021.125453.1652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.125453.1652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在每一个$G$-群中‎, ‎有限相容方程组的每一个$G$存在闭元满足nulstellensz‎. ‎这将推广[J的定理G‎. ‎代数,219(1999)‎16-79]‎. ‎因此,我们看到任意种类的$G$-群中的每一对$G$存在闭元素都产生相同的拟变化,并且如果它们都是$q_{omega}$紧的‎, ‎它们在几何上是等价的‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nullstellensatz for relative existentially closed groups
We prove that in every variety of $G$-groups‎, ‎every $G$-existentially closed element satisfies nullstellensatz for finite consistent systems of equations‎. ‎This will generalize  Theorem G of [J‎. ‎Algebra,  219 (1999) ‎16--79]‎. ‎As a result we see that every pair of $G$-existentially closed elements in an arbitrary variety of $G$-groups generate the same quasi-variety and if both of them are $q_{omega}$-compact‎, ‎they are geometrically equivalent‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信