含参数klein-gordon-maxwell系统非平凡解的存在性和多重性

Pub Date : 2017-05-01 DOI:10.4134/JKMS.J160344
Guofeng Che, Haibo Chen
{"title":"含参数klein-gordon-maxwell系统非平凡解的存在性和多重性","authors":"Guofeng Che, Haibo Chen","doi":"10.4134/JKMS.J160344","DOIUrl":null,"url":null,"abstract":". This paper is concerned with the following Klein-Gordon-Maxwell system: where ω > 0 is a constant and λ is the parameter. Under some suitable assumptions on V ( x ) and f ( x,u ), we establish the existence and multiplicity of nontrivial solutions of the above system via variational methods. Our conditions weaken the Ambrosetti Rabinowitz type condition. 35B38.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER\",\"authors\":\"Guofeng Che, Haibo Chen\",\"doi\":\"10.4134/JKMS.J160344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is concerned with the following Klein-Gordon-Maxwell system: where ω > 0 is a constant and λ is the parameter. Under some suitable assumptions on V ( x ) and f ( x,u ), we establish the existence and multiplicity of nontrivial solutions of the above system via variational methods. Our conditions weaken the Ambrosetti Rabinowitz type condition. 35B38.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J160344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J160344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了以下克莱因-戈登-麦克斯韦系统:其中ω>0是常数,λ是参数。在V(x)和f(x,u)的一些适当假设下,我们用变分方法建立了上述系统非平凡解的存在性和多重性。我们的条件削弱了Ambrosetti-Rabinowitz型条件。35B38。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER
. This paper is concerned with the following Klein-Gordon-Maxwell system: where ω > 0 is a constant and λ is the parameter. Under some suitable assumptions on V ( x ) and f ( x,u ), we establish the existence and multiplicity of nontrivial solutions of the above system via variational methods. Our conditions weaken the Ambrosetti Rabinowitz type condition. 35B38.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信