{"title":"选定基因的遗传变异性与血小板高聚集性和动脉血栓形成的相关性","authors":"Brunclikova Monika, Ivankova Jela, Skerenova Maria, S. Tomas, Stanciakova Lucia, Škorňová Ingrid, Sterankova Miroslava, Zolkova Jana, Dobrotova Miroslava, Holly Pavol, Kubisz Peter, Staško Ján","doi":"10.2478/acm-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: Inherited platelet hyperaggregability, so called “Sticky platelet syndrome” (SPS), is a prothrombotic platelet disorder. The syndrome contributes more often to arterial than venous thrombosis. The most common localization of arterial occlusion involves cerebral or coronary arteries. However, SPS may also lead to thrombosis in the atypical sites of the circulation. This qualitative platelet alteration causes platelet hyperaggregability after a very low concentration of platelet inducers – adenosine diphosphate (ADP) and/or epinephrine (EPI). The precise genetic background of the syndrome has not been defined. In the present study we aimed to determine the association between selected single nucleotide polymorphisms (SNPs) within genes for platelet endothelial aggregation receptor 1 (PEAR1) and murine retrovirus integration site 1 (MRVI1) and the risk for arterial thrombosis in patients with SPS. The products of these selected genes play an important role in platelet aggregation. Patients and methods: We examined 69 patients with SPS and a history of arterial thrombosis and 69 healthy blood donors who served as controls. SPS was confirmed by a light transmission aggregometry (LTA) according to the method and criteria described by Mammen and Bick. We assessed two SNPs within PEAR1 gene (rs12041331, rs1256888) and two SNPs within MRVI1 gene (rs1874445, rs7940646). Results: Selected PEAR1 and MRVI1 polymorphisms seem not to be a risk factor for the development of SPS as the syndrome with an arterial thrombosis phenotype. However, in the subgroup of SPS1 patients there was found a decreased frequency of the minor A allele of SNP rs12041331 in PEAR1 gene (borderline p value, p=0.061) that can be hypothesized as protective against arterial thrombosis. In the same SPS1 subgroup the haplotype TA in PEAR1 gene also showed a decreased frequency with a borderline insignificance (p=0.056). We can theorize also about its protective role in SPS1 patients. We did not confirm the protective effect of polymorphism (T/T of rs 12566888) in PEAR1 against arterial thrombosis in SPS patients and SPS subgroups. Conclusion: Our results support the idea that examined genetic variability of the selected SNPs in PEAR1 and MRVI1 genes is not associated with platelet hyperaggregability manifested as arterial thrombosis. The possible protective role of the minor A allele of SNP rs12041331 as well as a role of haplotype TA in PEAR1 gene related to the arterial thrombosis found in the subgroup of SPS1 patients needs to be verified in further research.","PeriodicalId":30233,"journal":{"name":"Acta Medica Martiniana","volume":"22 1","pages":"34 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of Genetic Variability in Selected Genes with Platelet Hyperaggregability and Arterial Thrombosis\",\"authors\":\"Brunclikova Monika, Ivankova Jela, Skerenova Maria, S. Tomas, Stanciakova Lucia, Škorňová Ingrid, Sterankova Miroslava, Zolkova Jana, Dobrotova Miroslava, Holly Pavol, Kubisz Peter, Staško Ján\",\"doi\":\"10.2478/acm-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: Inherited platelet hyperaggregability, so called “Sticky platelet syndrome” (SPS), is a prothrombotic platelet disorder. The syndrome contributes more often to arterial than venous thrombosis. The most common localization of arterial occlusion involves cerebral or coronary arteries. However, SPS may also lead to thrombosis in the atypical sites of the circulation. This qualitative platelet alteration causes platelet hyperaggregability after a very low concentration of platelet inducers – adenosine diphosphate (ADP) and/or epinephrine (EPI). The precise genetic background of the syndrome has not been defined. In the present study we aimed to determine the association between selected single nucleotide polymorphisms (SNPs) within genes for platelet endothelial aggregation receptor 1 (PEAR1) and murine retrovirus integration site 1 (MRVI1) and the risk for arterial thrombosis in patients with SPS. The products of these selected genes play an important role in platelet aggregation. Patients and methods: We examined 69 patients with SPS and a history of arterial thrombosis and 69 healthy blood donors who served as controls. SPS was confirmed by a light transmission aggregometry (LTA) according to the method and criteria described by Mammen and Bick. We assessed two SNPs within PEAR1 gene (rs12041331, rs1256888) and two SNPs within MRVI1 gene (rs1874445, rs7940646). Results: Selected PEAR1 and MRVI1 polymorphisms seem not to be a risk factor for the development of SPS as the syndrome with an arterial thrombosis phenotype. However, in the subgroup of SPS1 patients there was found a decreased frequency of the minor A allele of SNP rs12041331 in PEAR1 gene (borderline p value, p=0.061) that can be hypothesized as protective against arterial thrombosis. In the same SPS1 subgroup the haplotype TA in PEAR1 gene also showed a decreased frequency with a borderline insignificance (p=0.056). We can theorize also about its protective role in SPS1 patients. We did not confirm the protective effect of polymorphism (T/T of rs 12566888) in PEAR1 against arterial thrombosis in SPS patients and SPS subgroups. Conclusion: Our results support the idea that examined genetic variability of the selected SNPs in PEAR1 and MRVI1 genes is not associated with platelet hyperaggregability manifested as arterial thrombosis. The possible protective role of the minor A allele of SNP rs12041331 as well as a role of haplotype TA in PEAR1 gene related to the arterial thrombosis found in the subgroup of SPS1 patients needs to be verified in further research.\",\"PeriodicalId\":30233,\"journal\":{\"name\":\"Acta Medica Martiniana\",\"volume\":\"22 1\",\"pages\":\"34 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Medica Martiniana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acm-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Medica Martiniana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acm-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Association of Genetic Variability in Selected Genes with Platelet Hyperaggregability and Arterial Thrombosis
Abstract Introduction: Inherited platelet hyperaggregability, so called “Sticky platelet syndrome” (SPS), is a prothrombotic platelet disorder. The syndrome contributes more often to arterial than venous thrombosis. The most common localization of arterial occlusion involves cerebral or coronary arteries. However, SPS may also lead to thrombosis in the atypical sites of the circulation. This qualitative platelet alteration causes platelet hyperaggregability after a very low concentration of platelet inducers – adenosine diphosphate (ADP) and/or epinephrine (EPI). The precise genetic background of the syndrome has not been defined. In the present study we aimed to determine the association between selected single nucleotide polymorphisms (SNPs) within genes for platelet endothelial aggregation receptor 1 (PEAR1) and murine retrovirus integration site 1 (MRVI1) and the risk for arterial thrombosis in patients with SPS. The products of these selected genes play an important role in platelet aggregation. Patients and methods: We examined 69 patients with SPS and a history of arterial thrombosis and 69 healthy blood donors who served as controls. SPS was confirmed by a light transmission aggregometry (LTA) according to the method and criteria described by Mammen and Bick. We assessed two SNPs within PEAR1 gene (rs12041331, rs1256888) and two SNPs within MRVI1 gene (rs1874445, rs7940646). Results: Selected PEAR1 and MRVI1 polymorphisms seem not to be a risk factor for the development of SPS as the syndrome with an arterial thrombosis phenotype. However, in the subgroup of SPS1 patients there was found a decreased frequency of the minor A allele of SNP rs12041331 in PEAR1 gene (borderline p value, p=0.061) that can be hypothesized as protective against arterial thrombosis. In the same SPS1 subgroup the haplotype TA in PEAR1 gene also showed a decreased frequency with a borderline insignificance (p=0.056). We can theorize also about its protective role in SPS1 patients. We did not confirm the protective effect of polymorphism (T/T of rs 12566888) in PEAR1 against arterial thrombosis in SPS patients and SPS subgroups. Conclusion: Our results support the idea that examined genetic variability of the selected SNPs in PEAR1 and MRVI1 genes is not associated with platelet hyperaggregability manifested as arterial thrombosis. The possible protective role of the minor A allele of SNP rs12041331 as well as a role of haplotype TA in PEAR1 gene related to the arterial thrombosis found in the subgroup of SPS1 patients needs to be verified in further research.
期刊介绍:
Acta Medica Martiniana is a medical scientific journal, first published in print form in December 2001. It is a continuation of the journal / almanac Folia Medica Martiniana (1971 - 1996). The journal‘s owner is the Jessenius Faculty of Medicine, Comenius University, Slovakia. Dissemination of research results and scientific knowledge from all areas of medicine and nursing. Stimulation, facilitation and supporting of publication activity for the young medical research and clinical generation. The contributions of young novice authors (PhD students and post-doctorials) are particularly welcome. Acta Medica Martiniana is an open-access journal, with a periodicity of publishing three times per year (Apr/Aug/Dec). It covers a wide range of basic medical disciplines, such as anatomy, histology, biochemistry, human physiology, pharmacology, etc., as well as all clinical areas incl. preventive medicine, public health and nursing. Interdisciplinary and multidisciplinary manuscripts, including papers from all areas of biomedical research, are welcome.