{"title":"通过石墨烯静电约束p - n结的克莱因隧穿带电电流的拓扑调谐倾角","authors":"H. Grushevskaya, G. Krylov","doi":"10.33581/1561-4085-2022-25-1-21-40","DOIUrl":null,"url":null,"abstract":"Problem of control over Klein-tunnelling states from electrostatically-confined graphene p - n junctions has been discussed. The lack of quasi-bound states, being the states with a finite life time, in a pseudo-Dirac-fermion model for the graphene quantum dot (GQD) is theoretically predicted as inapplicability of the so-called \"resonance condition\" leading to an inconsistent linear system corresponding to matching conditions. Within a pseudo-Dirac-Weyl fermion model GQD, the graphene charge carriers are topologically nontrivial and can be confined by a staircase-type potential due to competition between Zak curvature and centrifugal-force actions. The predicted topological effects elucidate experimentally observed resonances created by electron beam and laser pulse in crystalline arrays of single-walled carbon nanotubes as the Klein-tunnelling resonant states in the p - n graphene junctions. We present a robust approach to fabricate stable graphene p - n junctions by fine-tuning the topological effects.","PeriodicalId":43601,"journal":{"name":"Nonlinear Phenomena in Complex Systems","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topologically Tuned Obliquity of Klein-Tunnelling Charged Currents Through Graphene Electrostatically-Confined p - n Junctions\",\"authors\":\"H. Grushevskaya, G. Krylov\",\"doi\":\"10.33581/1561-4085-2022-25-1-21-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problem of control over Klein-tunnelling states from electrostatically-confined graphene p - n junctions has been discussed. The lack of quasi-bound states, being the states with a finite life time, in a pseudo-Dirac-fermion model for the graphene quantum dot (GQD) is theoretically predicted as inapplicability of the so-called \\\"resonance condition\\\" leading to an inconsistent linear system corresponding to matching conditions. Within a pseudo-Dirac-Weyl fermion model GQD, the graphene charge carriers are topologically nontrivial and can be confined by a staircase-type potential due to competition between Zak curvature and centrifugal-force actions. The predicted topological effects elucidate experimentally observed resonances created by electron beam and laser pulse in crystalline arrays of single-walled carbon nanotubes as the Klein-tunnelling resonant states in the p - n graphene junctions. We present a robust approach to fabricate stable graphene p - n junctions by fine-tuning the topological effects.\",\"PeriodicalId\":43601,\"journal\":{\"name\":\"Nonlinear Phenomena in Complex Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Phenomena in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/1561-4085-2022-25-1-21-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Phenomena in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/1561-4085-2022-25-1-21-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Topologically Tuned Obliquity of Klein-Tunnelling Charged Currents Through Graphene Electrostatically-Confined p - n Junctions
Problem of control over Klein-tunnelling states from electrostatically-confined graphene p - n junctions has been discussed. The lack of quasi-bound states, being the states with a finite life time, in a pseudo-Dirac-fermion model for the graphene quantum dot (GQD) is theoretically predicted as inapplicability of the so-called "resonance condition" leading to an inconsistent linear system corresponding to matching conditions. Within a pseudo-Dirac-Weyl fermion model GQD, the graphene charge carriers are topologically nontrivial and can be confined by a staircase-type potential due to competition between Zak curvature and centrifugal-force actions. The predicted topological effects elucidate experimentally observed resonances created by electron beam and laser pulse in crystalline arrays of single-walled carbon nanotubes as the Klein-tunnelling resonant states in the p - n graphene junctions. We present a robust approach to fabricate stable graphene p - n junctions by fine-tuning the topological effects.