{"title":"羧甲基罗望子胶纳米粒子;作为一种抗氧化活性","authors":"Jagram Meena, S. Warkar, D. Verma","doi":"10.14447/jnmes.v26i3.a01","DOIUrl":null,"url":null,"abstract":"The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethyl Tamarind Kernel Gum Nanoparticles; As an Antioxidant Activity\",\"authors\":\"Jagram Meena, S. Warkar, D. Verma\",\"doi\":\"10.14447/jnmes.v26i3.a01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v26i3.a01\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v26i3.a01","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Carboxymethyl Tamarind Kernel Gum Nanoparticles; As an Antioxidant Activity
The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.