S. Vlassov, D. Bocharov, B. Polyakov, Mikk Vahtrus, A. Šutka, S. Oras, Veronika Zadin, A. Kyritsakis
{"title":"纤锌矿结构ZnO纳米线弹性性能的实验与理论研究述评","authors":"S. Vlassov, D. Bocharov, B. Polyakov, Mikk Vahtrus, A. Šutka, S. Oras, Veronika Zadin, A. Kyritsakis","doi":"10.1515/ntrev-2022-0505","DOIUrl":null,"url":null,"abstract":"Abstract In this critical review, we call attention to a widespread problem related to the vast disagreement in elastic moduli values reported by different authors for nanostructures made of the same material. As a particular example, we focus on ZnO nanowires (NWs), which are among the most intensively studied nanomaterials due to their remarkable physical properties and promising applications. Since ZnO NWs possess piezoelectric effects, many applications involve mechanical deformations. Therefore, there are plenty of works dedicated to the mechanical characterization of ZnO NWs using various experimental and computational techniques. Although the most of works consider exactly the same growth direction and wurtzite crystal structure, reported values of Young’s modulus vary drastically from author to author ranging from 20 to 800 GPa. Moreover, both – diameter dependent and independent – Young’s modulus values have been reported. In this work, we give a critical overview and perform a thorough analysis of the available experimental and theoretical works on the mechanical characterization of ZnO NWs in order to find out the most significant sources of errors and to bring out the most trustable results.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires\",\"authors\":\"S. Vlassov, D. Bocharov, B. Polyakov, Mikk Vahtrus, A. Šutka, S. Oras, Veronika Zadin, A. Kyritsakis\",\"doi\":\"10.1515/ntrev-2022-0505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this critical review, we call attention to a widespread problem related to the vast disagreement in elastic moduli values reported by different authors for nanostructures made of the same material. As a particular example, we focus on ZnO nanowires (NWs), which are among the most intensively studied nanomaterials due to their remarkable physical properties and promising applications. Since ZnO NWs possess piezoelectric effects, many applications involve mechanical deformations. Therefore, there are plenty of works dedicated to the mechanical characterization of ZnO NWs using various experimental and computational techniques. Although the most of works consider exactly the same growth direction and wurtzite crystal structure, reported values of Young’s modulus vary drastically from author to author ranging from 20 to 800 GPa. Moreover, both – diameter dependent and independent – Young’s modulus values have been reported. In this work, we give a critical overview and perform a thorough analysis of the available experimental and theoretical works on the mechanical characterization of ZnO NWs in order to find out the most significant sources of errors and to bring out the most trustable results.\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2022-0505\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0505","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires
Abstract In this critical review, we call attention to a widespread problem related to the vast disagreement in elastic moduli values reported by different authors for nanostructures made of the same material. As a particular example, we focus on ZnO nanowires (NWs), which are among the most intensively studied nanomaterials due to their remarkable physical properties and promising applications. Since ZnO NWs possess piezoelectric effects, many applications involve mechanical deformations. Therefore, there are plenty of works dedicated to the mechanical characterization of ZnO NWs using various experimental and computational techniques. Although the most of works consider exactly the same growth direction and wurtzite crystal structure, reported values of Young’s modulus vary drastically from author to author ranging from 20 to 800 GPa. Moreover, both – diameter dependent and independent – Young’s modulus values have been reported. In this work, we give a critical overview and perform a thorough analysis of the available experimental and theoretical works on the mechanical characterization of ZnO NWs in order to find out the most significant sources of errors and to bring out the most trustable results.
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.