重建月球样品的彩色三维断层扫描

IF 3.4 2区 化学 Q1 SPECTROSCOPY
M. Lei
{"title":"重建月球样品的彩色三维断层扫描","authors":"M. Lei","doi":"10.46770/as.2022.009","DOIUrl":null,"url":null,"abstract":": As the Chinese lunar exploration project prepares for future exploration activities on the Moon, there is a growing need to develop high-fidelity lunar soil simulants. The morphological analysis of lunar soil and its simulant is important for matching the unique properties of the agglutinates. To date, several techniques, including scanning electron, X-ray, and optical microscopies, have been extensively applied to analyze the three-dimensional (3D) morphology of lunar samples. However, none of these tools can acquire the natural color fine 3D microstructure of the samples, which is necessary to analyze components of the lunar meteorite and soil particles. In this letter, we present a high-resolution, natural color 3D tomographic system for the initial analysis of lunar samples. The superior performance of the system is demonstrated by the fine details and color 3D tomography of a lunar meteorite and lunar soil simulant. This method is expected to provide an essential tool for visually presenting the geological evolution of the Moon.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstructing The Color 3D Tomography Of Lunar Samples\",\"authors\":\"M. Lei\",\"doi\":\"10.46770/as.2022.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": As the Chinese lunar exploration project prepares for future exploration activities on the Moon, there is a growing need to develop high-fidelity lunar soil simulants. The morphological analysis of lunar soil and its simulant is important for matching the unique properties of the agglutinates. To date, several techniques, including scanning electron, X-ray, and optical microscopies, have been extensively applied to analyze the three-dimensional (3D) morphology of lunar samples. However, none of these tools can acquire the natural color fine 3D microstructure of the samples, which is necessary to analyze components of the lunar meteorite and soil particles. In this letter, we present a high-resolution, natural color 3D tomographic system for the initial analysis of lunar samples. The superior performance of the system is demonstrated by the fine details and color 3D tomography of a lunar meteorite and lunar soil simulant. This method is expected to provide an essential tool for visually presenting the geological evolution of the Moon.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.009\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.009","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 1

摘要

:随着中国月球探测项目为未来的月球探测活动做准备,开发高保真月球土壤模拟物的需求越来越大。月球土壤及其模拟物的形态分析对于匹配凝集素的独特性质具有重要意义。到目前为止,包括扫描电子、X射线和光学显微镜在内的几种技术已被广泛应用于分析月球样品的三维(3D)形态。然而,这些工具都无法获得样品的自然色精细3D微观结构,这对于分析月球陨石和土壤颗粒的成分是必要的。在这封信中,我们提出了一个高分辨率、自然彩色的3D断层成像系统,用于月球样本的初步分析。通过月球陨石和月球土壤模拟物的精细细节和彩色三维层析成像,证明了该系统的优越性能。这种方法有望为直观地呈现月球的地质演化提供一个重要的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstructing The Color 3D Tomography Of Lunar Samples
: As the Chinese lunar exploration project prepares for future exploration activities on the Moon, there is a growing need to develop high-fidelity lunar soil simulants. The morphological analysis of lunar soil and its simulant is important for matching the unique properties of the agglutinates. To date, several techniques, including scanning electron, X-ray, and optical microscopies, have been extensively applied to analyze the three-dimensional (3D) morphology of lunar samples. However, none of these tools can acquire the natural color fine 3D microstructure of the samples, which is necessary to analyze components of the lunar meteorite and soil particles. In this letter, we present a high-resolution, natural color 3D tomographic system for the initial analysis of lunar samples. The superior performance of the system is demonstrated by the fine details and color 3D tomography of a lunar meteorite and lunar soil simulant. This method is expected to provide an essential tool for visually presenting the geological evolution of the Moon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信