{"title":"关于凸函数的一个分离定理","authors":"A. Olbryś","doi":"10.2478/amsil-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper we establish necessary and sufficient conditions under which two functions can be separated by a delta-convex function. This separation will be understood as a separation with respect to the partial order generated by the Lorentz cone. An application to a stability problem for delta-convexity is also given.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"133 - 141"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a Separation Theorem for Delta-Convex Functions\",\"authors\":\"A. Olbryś\",\"doi\":\"10.2478/amsil-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper we establish necessary and sufficient conditions under which two functions can be separated by a delta-convex function. This separation will be understood as a separation with respect to the partial order generated by the Lorentz cone. An application to a stability problem for delta-convexity is also given.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"34 1\",\"pages\":\"133 - 141\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a Separation Theorem for Delta-Convex Functions
Abstract In the present paper we establish necessary and sufficient conditions under which two functions can be separated by a delta-convex function. This separation will be understood as a separation with respect to the partial order generated by the Lorentz cone. An application to a stability problem for delta-convexity is also given.