用磁性微丝流变仪对生物材料进行无损流变测量

IF 3 2区 工程技术 Q2 MECHANICS
Margaret Braunreuther, M. Liegeois, J. Fahy, G. Fuller
{"title":"用磁性微丝流变仪对生物材料进行无损流变测量","authors":"Margaret Braunreuther, M. Liegeois, J. Fahy, G. Fuller","doi":"10.1122/8.0000606","DOIUrl":null,"url":null,"abstract":"Programmable hydrogels, such as thiolated hydrogels, are frequently used for tissue engineering and drug delivery applications, because they offer the ability to control gelation, degradation, and adhesion. Understanding how the mechanical properties of these materials change during these processes is essential as they directly impact cell fate and delivery efficacy. The rheology of hydrogels has been quantified primarily via bulk rheological methods. While such methods are effective, they require large sample volumes and result in the destruction of the sample; therefore, responses to multiple stimuli must be recorded across many different samples. We have developed a magnetic microwire rheometer that can characterize the rheology of small sample volumes while maintaining the integrity of the sample, such that the material response to a range of stimuli can be recorded for a single sample. This capability enables insights into time-dependent rheological changes, such as gelation and degradation, and can be applied to characterize dynamic in situ systems that are the basis for tissue scaffolding, drug delivery vehicles, and other important biological applications.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nondestructive rheological measurements of biomaterials with a magnetic microwire rheometer\",\"authors\":\"Margaret Braunreuther, M. Liegeois, J. Fahy, G. Fuller\",\"doi\":\"10.1122/8.0000606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable hydrogels, such as thiolated hydrogels, are frequently used for tissue engineering and drug delivery applications, because they offer the ability to control gelation, degradation, and adhesion. Understanding how the mechanical properties of these materials change during these processes is essential as they directly impact cell fate and delivery efficacy. The rheology of hydrogels has been quantified primarily via bulk rheological methods. While such methods are effective, they require large sample volumes and result in the destruction of the sample; therefore, responses to multiple stimuli must be recorded across many different samples. We have developed a magnetic microwire rheometer that can characterize the rheology of small sample volumes while maintaining the integrity of the sample, such that the material response to a range of stimuli can be recorded for a single sample. This capability enables insights into time-dependent rheological changes, such as gelation and degradation, and can be applied to characterize dynamic in situ systems that are the basis for tissue scaffolding, drug delivery vehicles, and other important biological applications.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

可编程水凝胶,如巯基化水凝胶,经常用于组织工程和药物递送应用,因为它们提供了控制凝胶化、降解和粘附的能力。了解这些材料的机械性能在这些过程中是如何变化的至关重要,因为它们直接影响细胞命运和递送效率。水凝胶的流变学主要通过本体流变学方法进行定量。虽然这种方法是有效的,但它们需要大量的样本,并导致样本的破坏;因此,对多种刺激的反应必须记录在许多不同的样本中。我们开发了一种磁性微丝流变仪,可以在保持样品完整性的同时表征小样品体积的流变性,从而可以记录单个样品对一系列刺激的材料响应。这种能力使我们能够深入了解与时间相关的流变变化,如凝胶化和降解,并可用于表征动态原位系统,这些系统是组织支架、药物递送载体和其他重要生物应用的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondestructive rheological measurements of biomaterials with a magnetic microwire rheometer
Programmable hydrogels, such as thiolated hydrogels, are frequently used for tissue engineering and drug delivery applications, because they offer the ability to control gelation, degradation, and adhesion. Understanding how the mechanical properties of these materials change during these processes is essential as they directly impact cell fate and delivery efficacy. The rheology of hydrogels has been quantified primarily via bulk rheological methods. While such methods are effective, they require large sample volumes and result in the destruction of the sample; therefore, responses to multiple stimuli must be recorded across many different samples. We have developed a magnetic microwire rheometer that can characterize the rheology of small sample volumes while maintaining the integrity of the sample, such that the material response to a range of stimuli can be recorded for a single sample. This capability enables insights into time-dependent rheological changes, such as gelation and degradation, and can be applied to characterize dynamic in situ systems that are the basis for tissue scaffolding, drug delivery vehicles, and other important biological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信