{"title":"混合逻辑的解析非标记证明系统:概述和几个惊人的事实","authors":"T. Braüner","doi":"10.18778/0138-0680.2022.02","DOIUrl":null,"url":null,"abstract":"This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts\",\"authors\":\"T. Braüner\",\"doi\":\"10.18778/0138-0680.2022.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2022.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2022.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts
This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.