{"title":"虫洞时间机器和多重历史","authors":"Barak Shoshany, Jared Wogan","doi":"10.1007/s10714-023-03094-8","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper, we showed that a class of time travel paradoxes which cannot be resolved using Novikov’s self-consistency conjecture can be resolved by assuming the existence of multiple histories or parallel timelines. However, our proof was obtained using a simplistic toy model, which was formulated using contrived laws of physics. In the present paper we define and analyze a new model of time travel paradoxes, which is more compatible with known physics. This model consists of a traversable Morris-Thorne wormhole time machine in 3+1 spacetime dimensions. We define the spacetime topology and geometry of the model, calculate the geodesics of objects passing through the time machine, and prove that this model inevitably leads to paradoxes which cannot be resolved using Novikov’s conjecture, but can be resolved using multiple histories. An open-source simulation of our new model using Mathematica is available for download on GitHub. We also provide additional arguments against the Novikov self-consistency conjecture by considering two new paradoxes, the switch paradox and the password paradox, for which assuming self-consistency inevitably leads to counter-intuitive consequences. Our new results provide more substantial support to our claim that if time travel is possible, then multiple histories or parallel timelines must also be possible.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-023-03094-8.pdf","citationCount":"2","resultStr":"{\"title\":\"Wormhole Time Machines and Multiple Histories\",\"authors\":\"Barak Shoshany, Jared Wogan\",\"doi\":\"10.1007/s10714-023-03094-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a previous paper, we showed that a class of time travel paradoxes which cannot be resolved using Novikov’s self-consistency conjecture can be resolved by assuming the existence of multiple histories or parallel timelines. However, our proof was obtained using a simplistic toy model, which was formulated using contrived laws of physics. In the present paper we define and analyze a new model of time travel paradoxes, which is more compatible with known physics. This model consists of a traversable Morris-Thorne wormhole time machine in 3+1 spacetime dimensions. We define the spacetime topology and geometry of the model, calculate the geodesics of objects passing through the time machine, and prove that this model inevitably leads to paradoxes which cannot be resolved using Novikov’s conjecture, but can be resolved using multiple histories. An open-source simulation of our new model using Mathematica is available for download on GitHub. We also provide additional arguments against the Novikov self-consistency conjecture by considering two new paradoxes, the switch paradox and the password paradox, for which assuming self-consistency inevitably leads to counter-intuitive consequences. Our new results provide more substantial support to our claim that if time travel is possible, then multiple histories or parallel timelines must also be possible.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"55 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-023-03094-8.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-023-03094-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03094-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
In a previous paper, we showed that a class of time travel paradoxes which cannot be resolved using Novikov’s self-consistency conjecture can be resolved by assuming the existence of multiple histories or parallel timelines. However, our proof was obtained using a simplistic toy model, which was formulated using contrived laws of physics. In the present paper we define and analyze a new model of time travel paradoxes, which is more compatible with known physics. This model consists of a traversable Morris-Thorne wormhole time machine in 3+1 spacetime dimensions. We define the spacetime topology and geometry of the model, calculate the geodesics of objects passing through the time machine, and prove that this model inevitably leads to paradoxes which cannot be resolved using Novikov’s conjecture, but can be resolved using multiple histories. An open-source simulation of our new model using Mathematica is available for download on GitHub. We also provide additional arguments against the Novikov self-consistency conjecture by considering two new paradoxes, the switch paradox and the password paradox, for which assuming self-consistency inevitably leads to counter-intuitive consequences. Our new results provide more substantial support to our claim that if time travel is possible, then multiple histories or parallel timelines must also be possible.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.