{"title":"TiO2-GO+Ag三元纳米复合材料的光电性能","authors":"N. Ibrayev, A. Zhumabekov, E. Seliverstova","doi":"10.29317/EJPFM.2020040309","DOIUrl":null,"url":null,"abstract":"A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO 2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO 2 -GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge- transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO 2 -GO-Ag is noticeably lower than for pure TiO 2 ( ≈ 13 times) and TiO 2 -GO nanocomposite ( ≈ 3 times). In addition, the prescence of Ag/TiO 2 core-shell nanostructures in the TiO 2 -GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material\",\"authors\":\"N. Ibrayev, A. Zhumabekov, E. Seliverstova\",\"doi\":\"10.29317/EJPFM.2020040309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO 2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO 2 -GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge- transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO 2 -GO-Ag is noticeably lower than for pure TiO 2 ( ≈ 13 times) and TiO 2 -GO nanocomposite ( ≈ 3 times). In addition, the prescence of Ag/TiO 2 core-shell nanostructures in the TiO 2 -GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.\",\"PeriodicalId\":36047,\"journal\":{\"name\":\"Eurasian Journal of Physics and Functional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Physics and Functional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29317/EJPFM.2020040309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Physics and Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29317/EJPFM.2020040309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material
A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO 2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO 2 -GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge- transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO 2 -GO-Ag is noticeably lower than for pure TiO 2 ( ≈ 13 times) and TiO 2 -GO nanocomposite ( ≈ 3 times). In addition, the prescence of Ag/TiO 2 core-shell nanostructures in the TiO 2 -GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.