具有常数平均曲率的水平Delaunay曲面,单位为$\mathbb{S}^2 \times\mathb{R}$和$\mathbb{H}^2 \times\mathbb{R}$

IF 1.8 2区 数学 Q1 MATHEMATICS
J. M. Manzano, Francisco Torralbo
{"title":"具有常数平均曲率的水平Delaunay曲面,单位为$\\mathbb{S}^2 \\times\\mathb{R}$和$\\mathbb{H}^2 \\times\\mathbb{R}$","authors":"J. M. Manzano, Francisco Torralbo","doi":"10.4310/cjm.2022.v10.n3.a2","DOIUrl":null,"url":null,"abstract":"We obtain a $1$-parameter family of horizontal Delaunay surfaces with positive constant mean curvature in $\\mathbb{S}^2\\times\\mathbb{R}$ and $\\mathbb{H}^2\\times\\mathbb{R}$, being the mean curvature larger than $\\frac{1}{2}$ in the latter case. These surfaces are not equivariant but singly periodic, lie at bounded distance from a horizontal geodesic, and complete the family of horizontal unduloids previously given by the authors. We study in detail the geometry of the whole family and show that horizontal unduloids are properly embedded in $\\mathbb H^2\\times\\mathbb{R}$. We also find (among unduloids) families of embedded constant mean curvature tori in $\\mathbb S^2\\times\\mathbb{R}$ which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. In particular, we find the first non-equivariant examples of embedded tori in $\\mathbb{S}^2\\times\\mathbb{R}$, which have constant mean curvature $H>\\frac12$. Finally, we prove that there are no properly immersed surface with constant mean curvature $H\\leq\\frac{1}{2}$ at bounded distance from a horizontal geodesic in $\\mathbb{H}^2\\times\\mathbb{R}$.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal Delaunay surfaces with constant mean curvature in $\\\\mathbb{S}^2 \\\\times \\\\mathbb{R}$ and $\\\\mathbb{H}^2 \\\\times \\\\mathbb{R}$\",\"authors\":\"J. M. Manzano, Francisco Torralbo\",\"doi\":\"10.4310/cjm.2022.v10.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a $1$-parameter family of horizontal Delaunay surfaces with positive constant mean curvature in $\\\\mathbb{S}^2\\\\times\\\\mathbb{R}$ and $\\\\mathbb{H}^2\\\\times\\\\mathbb{R}$, being the mean curvature larger than $\\\\frac{1}{2}$ in the latter case. These surfaces are not equivariant but singly periodic, lie at bounded distance from a horizontal geodesic, and complete the family of horizontal unduloids previously given by the authors. We study in detail the geometry of the whole family and show that horizontal unduloids are properly embedded in $\\\\mathbb H^2\\\\times\\\\mathbb{R}$. We also find (among unduloids) families of embedded constant mean curvature tori in $\\\\mathbb S^2\\\\times\\\\mathbb{R}$ which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. In particular, we find the first non-equivariant examples of embedded tori in $\\\\mathbb{S}^2\\\\times\\\\mathbb{R}$, which have constant mean curvature $H>\\\\frac12$. Finally, we prove that there are no properly immersed surface with constant mean curvature $H\\\\leq\\\\frac{1}{2}$ at bounded distance from a horizontal geodesic in $\\\\mathbb{H}^2\\\\times\\\\mathbb{R}$.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2022.v10.n3.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n3.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了一个水平Delaunay曲面的$1$参数族,其正常平均曲率为$\mathbb{S}^2 \times\mathb{R}$和$\mathbb{H}^2 \times\mathbb{R}$,在后一种情况下,平均曲率大于$\frac{1}{2}$。这些曲面不是等变的,而是单周期的,位于距离水平测地线有界的距离处,并完成了作者先前给出的水平unduloid族。我们详细研究了整个家族的几何结构,并证明了水平unduloid正确地嵌入在$\mathbb H^2 \times\mathbb{R}$中。我们还发现(在unduloid中)$\mathbb S^2 \times\mathbb{R}$中嵌入常平均曲率tori的族,它们是从一堆相切球体到水平不变圆柱体的连续变形。特别地,我们在$\mathbb{S}^2 \times\mathbb{R}$中发现了嵌入环面的第一个非等变例子,它们具有恒定的平均曲率$H>\frac12$。最后,我们证明了在距离$\mathbb{H}^2 \times\mathbb{R}$中的水平测地线有界距离处,不存在具有常平均曲率$H\leq\frac{1}{2}$的适当浸入曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Horizontal Delaunay surfaces with constant mean curvature in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$
We obtain a $1$-parameter family of horizontal Delaunay surfaces with positive constant mean curvature in $\mathbb{S}^2\times\mathbb{R}$ and $\mathbb{H}^2\times\mathbb{R}$, being the mean curvature larger than $\frac{1}{2}$ in the latter case. These surfaces are not equivariant but singly periodic, lie at bounded distance from a horizontal geodesic, and complete the family of horizontal unduloids previously given by the authors. We study in detail the geometry of the whole family and show that horizontal unduloids are properly embedded in $\mathbb H^2\times\mathbb{R}$. We also find (among unduloids) families of embedded constant mean curvature tori in $\mathbb S^2\times\mathbb{R}$ which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. In particular, we find the first non-equivariant examples of embedded tori in $\mathbb{S}^2\times\mathbb{R}$, which have constant mean curvature $H>\frac12$. Finally, we prove that there are no properly immersed surface with constant mean curvature $H\leq\frac{1}{2}$ at bounded distance from a horizontal geodesic in $\mathbb{H}^2\times\mathbb{R}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信