GCH下作为全局选择弱形式的序数连接公理

IF 0.3 4区 数学 Q1 Arts and Humanities
Rodrigo A. Freire, Peter Holy
{"title":"GCH下作为全局选择弱形式的序数连接公理","authors":"Rodrigo A. Freire,&nbsp;Peter Holy","doi":"10.1007/s00153-022-00838-2","DOIUrl":null,"url":null,"abstract":"<div><p>The minimal ordinal-connection axiom <span>\\(MOC\\)</span> was introduced by the first author in R. Freire. (South Am. J. Log. 2:347–359, 2016). We observe that <span>\\(MOC\\)</span> is equivalent to a number of statements on the existence of certain hierarchies on the universe, and that under global choice, <span>\\(MOC\\)</span> is in fact equivalent to the <span>\\({{\\,\\mathrm{GCH}\\,}}\\)</span>. Our main results then show that <span>\\(MOC\\)</span> corresponds to a weak version of global choice in models of the <span>\\({{\\,\\mathrm{GCH}\\,}}\\)</span>: it can fail in models of the <span>\\({{\\,\\mathrm{GCH}\\,}}\\)</span> without global choice, but also global choice can fail in models of <span>\\(MOC\\)</span>. \n\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ordinal-connection axiom as a weak form of global choice under the GCH\",\"authors\":\"Rodrigo A. Freire,&nbsp;Peter Holy\",\"doi\":\"10.1007/s00153-022-00838-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The minimal ordinal-connection axiom <span>\\\\(MOC\\\\)</span> was introduced by the first author in R. Freire. (South Am. J. Log. 2:347–359, 2016). We observe that <span>\\\\(MOC\\\\)</span> is equivalent to a number of statements on the existence of certain hierarchies on the universe, and that under global choice, <span>\\\\(MOC\\\\)</span> is in fact equivalent to the <span>\\\\({{\\\\,\\\\mathrm{GCH}\\\\,}}\\\\)</span>. Our main results then show that <span>\\\\(MOC\\\\)</span> corresponds to a weak version of global choice in models of the <span>\\\\({{\\\\,\\\\mathrm{GCH}\\\\,}}\\\\)</span>: it can fail in models of the <span>\\\\({{\\\\,\\\\mathrm{GCH}\\\\,}}\\\\)</span> without global choice, but also global choice can fail in models of <span>\\\\(MOC\\\\)</span>. \\n\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-022-00838-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00838-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

最小序数连接公理\(MOC\)是由第一作者R. Freire提出的。(南Am。[j] .中华医学杂志,2016(2):347 - 359。我们观察到\(MOC\)等价于关于宇宙中存在一定层次的若干命题,而在全局选择下,\(MOC\)实际上等价于\({{\,\mathrm{GCH}\,}}\)。我们的主要结果表明,\(MOC\)对应于\({{\,\mathrm{GCH}\,}}\)模型中全局选择的弱版本:它在没有全局选择的\({{\,\mathrm{GCH}\,}}\)模型中可能失败,但在\(MOC\)模型中全局选择也可能失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ordinal-connection axiom as a weak form of global choice under the GCH

The minimal ordinal-connection axiom \(MOC\) was introduced by the first author in R. Freire. (South Am. J. Log. 2:347–359, 2016). We observe that \(MOC\) is equivalent to a number of statements on the existence of certain hierarchies on the universe, and that under global choice, \(MOC\) is in fact equivalent to the \({{\,\mathrm{GCH}\,}}\). Our main results then show that \(MOC\) corresponds to a weak version of global choice in models of the \({{\,\mathrm{GCH}\,}}\): it can fail in models of the \({{\,\mathrm{GCH}\,}}\) without global choice, but also global choice can fail in models of \(MOC\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信