关于最简三次域上的一组单位方程

Pub Date : 2021-04-26 DOI:10.5802/jtnb.1223
I. Vukusic, V. Ziegler
{"title":"关于最简三次域上的一组单位方程","authors":"I. Vukusic, V. Ziegler","doi":"10.5802/jtnb.1223","DOIUrl":null,"url":null,"abstract":"Let $a\\in \\mathbb{Z}$ and $\\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\\mathbb{Q}(\\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\\in \\mathbb{Z}[\\rho]^*$ and $n\\in \\mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\\leq \\max\\{1,|a|^{1/3}\\}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a family of unit equations over simplest cubic fields\",\"authors\":\"I. Vukusic, V. Ziegler\",\"doi\":\"10.5802/jtnb.1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $a\\\\in \\\\mathbb{Z}$ and $\\\\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\\\\mathbb{Q}(\\\\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\\\\in \\\\mathbb{Z}[\\\\rho]^*$ and $n\\\\in \\\\mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\\\\leq \\\\max\\\\{1,|a|^{1/3}\\\\}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$a\\in\mathbb{Z}$和$\rho$是$f_a(x)=x^3-ax^2-(a+3)x-1$的根,则数字域$K_a=\mathbb{Q}(\rho)$称为最简单三次域。在本文中,我们考虑单元方程族$u1+u2=n$,其中$u1,u2\In\mathbb{Z}[\rho]^*$和$n\In\mathbb{Z}$。我们在限制$|n|\leq\max\{1,|a|^{1/3}\}$下完全求解单位方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a family of unit equations over simplest cubic fields
Let $a\in \mathbb{Z}$ and $\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\mathbb{Q}(\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\in \mathbb{Z}[\rho]^*$ and $n\in \mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\leq \max\{1,|a|^{1/3}\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信