{"title":"关于最简三次域上的一组单位方程","authors":"I. Vukusic, V. Ziegler","doi":"10.5802/jtnb.1223","DOIUrl":null,"url":null,"abstract":"Let $a\\in \\mathbb{Z}$ and $\\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\\mathbb{Q}(\\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\\in \\mathbb{Z}[\\rho]^*$ and $n\\in \\mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\\leq \\max\\{1,|a|^{1/3}\\}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a family of unit equations over simplest cubic fields\",\"authors\":\"I. Vukusic, V. Ziegler\",\"doi\":\"10.5802/jtnb.1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $a\\\\in \\\\mathbb{Z}$ and $\\\\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\\\\mathbb{Q}(\\\\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\\\\in \\\\mathbb{Z}[\\\\rho]^*$ and $n\\\\in \\\\mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\\\\leq \\\\max\\\\{1,|a|^{1/3}\\\\}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a family of unit equations over simplest cubic fields
Let $a\in \mathbb{Z}$ and $\rho$ be a root of $f_a(x)=x^3-ax^2-(a+3)x-1$, then the number field $K_a=\mathbb{Q}(\rho)$ is called a simplest cubic field. In this paper we consider the family of unit equations $u_1+u_2=n$ where $u_1,u_2\in \mathbb{Z}[\rho]^*$ and $n\in \mathbb{Z}$. We completely solve the unit equations under the restriction $|n|\leq \max\{1,|a|^{1/3}\}$.