{"title":"紧致齐次空间上的Brascamp–Lieb不等式","authors":"R. Bramati","doi":"10.1515/agms-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract We provide a general strategy to construct multilinear inequalities of Brascamp–Lieb type on compact homogeneous spaces of Lie groups. As an application we obtain sharp integral inequalities on the real unit sphere involving functions with some degree of symmetry.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"7 1","pages":"130 - 157"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0007","citationCount":"7","resultStr":"{\"title\":\"Brascamp–Lieb Inequalities on Compact Homogeneous Spaces\",\"authors\":\"R. Bramati\",\"doi\":\"10.1515/agms-2019-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide a general strategy to construct multilinear inequalities of Brascamp–Lieb type on compact homogeneous spaces of Lie groups. As an application we obtain sharp integral inequalities on the real unit sphere involving functions with some degree of symmetry.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"7 1\",\"pages\":\"130 - 157\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2019-0007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2019-0007\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Brascamp–Lieb Inequalities on Compact Homogeneous Spaces
Abstract We provide a general strategy to construct multilinear inequalities of Brascamp–Lieb type on compact homogeneous spaces of Lie groups. As an application we obtain sharp integral inequalities on the real unit sphere involving functions with some degree of symmetry.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.