具有奇数参数的广义中心阶乘数

Youmna H. Zaid, F. Shiha, B. El-Desouky
{"title":"具有奇数参数的广义中心阶乘数","authors":"Youmna H. Zaid, F. Shiha, B. El-Desouky","doi":"10.4236/ojmsi.2020.83005","DOIUrl":null,"url":null,"abstract":"In this \npaper, we consider r-generalization of \nthe central factorial numbers with odd arguments of the first and second kind. Mainly, \nwe obtain various identities and properties related to these numbers. Matrix representation \nand the relation between these numbers and Pascal matrix are given. Furthermore, \nthe distributions of the signless r-central factorial numbers are derived. In addition, \nconnections between these numbers and the Legendre-Stirling numbers are given.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Central Factorial Numbers with Odd Arguments\",\"authors\":\"Youmna H. Zaid, F. Shiha, B. El-Desouky\",\"doi\":\"10.4236/ojmsi.2020.83005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this \\npaper, we consider r-generalization of \\nthe central factorial numbers with odd arguments of the first and second kind. Mainly, \\nwe obtain various identities and properties related to these numbers. Matrix representation \\nand the relation between these numbers and Pascal matrix are given. Furthermore, \\nthe distributions of the signless r-central factorial numbers are derived. In addition, \\nconnections between these numbers and the Legendre-Stirling numbers are given.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ojmsi.2020.83005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ojmsi.2020.83005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了具有第一类和第二类奇自变量的中心阶乘数的r-推广。主要是,我们获得了与这些数字相关的各种恒等式和性质。给出了矩阵表示以及这些数字与Pascal矩阵之间的关系。此外,还导出了无符号r中心阶乘数的分布。此外,还给出了这些数与勒让德-斯特灵数之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Central Factorial Numbers with Odd Arguments
In this paper, we consider r-generalization of the central factorial numbers with odd arguments of the first and second kind. Mainly, we obtain various identities and properties related to these numbers. Matrix representation and the relation between these numbers and Pascal matrix are given. Furthermore, the distributions of the signless r-central factorial numbers are derived. In addition, connections between these numbers and the Legendre-Stirling numbers are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信