{"title":"2U_n的多对组","authors":"M. Mahmudi, Malahayati Malahayati","doi":"10.14421/fourier.2019.82.51-55","DOIUrl":null,"url":null,"abstract":"Artikel ini membahas bukti grup multiplikatif 2Un menggunakan aturan kanselasi. Lebih jauh, juga dibuktikan bahwa grup tersebut merupakan grup siklik menggunakan hubungan isomorfisma grup dengan grup Un. \n[In this article, we prove the multiplicative group 2Un using the cancellation law. Futhermore, we also prove that 2Un is a cyclic group using an isomorphism property.]","PeriodicalId":55815,"journal":{"name":"Jurnal Fourier","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grup Multiplikatif 2U_n\",\"authors\":\"M. Mahmudi, Malahayati Malahayati\",\"doi\":\"10.14421/fourier.2019.82.51-55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artikel ini membahas bukti grup multiplikatif 2Un menggunakan aturan kanselasi. Lebih jauh, juga dibuktikan bahwa grup tersebut merupakan grup siklik menggunakan hubungan isomorfisma grup dengan grup Un. \\n[In this article, we prove the multiplicative group 2Un using the cancellation law. Futhermore, we also prove that 2Un is a cyclic group using an isomorphism property.]\",\"PeriodicalId\":55815,\"journal\":{\"name\":\"Jurnal Fourier\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Fourier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/fourier.2019.82.51-55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/fourier.2019.82.51-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artikel ini membahas bukti grup multiplikatif 2Un menggunakan aturan kanselasi. Lebih jauh, juga dibuktikan bahwa grup tersebut merupakan grup siklik menggunakan hubungan isomorfisma grup dengan grup Un.
[In this article, we prove the multiplicative group 2Un using the cancellation law. Futhermore, we also prove that 2Un is a cyclic group using an isomorphism property.]