基本和并联双蒸发器有机朗肯循环与太阳能超临界CO2循环的性能比较

IF 1.1 Q3 Engineering
Yunis Khan, Radhey SHYAM MISHRA
{"title":"基本和并联双蒸发器有机朗肯循环与太阳能超临界CO2循环的性能比较","authors":"Yunis Khan, Radhey SHYAM MISHRA","doi":"10.18186/thermal.1293026","DOIUrl":null,"url":null,"abstract":"Performance comparison of basic organic Rankine cycle (ORC) and parallel double evapora-tor ORC (PDORC) integrated with solar power tower (SPT) driven intercooled cascade sCO2 (supercritical carbon dioxide) cycle was carried out in present study. The intercooled cascade sCO2 cycle/ORC (configuration-1) and the intercooled cascade sCO2 cycle/PDORC (configu-ration-2) were considered for comparison on basis of parametric analysis. The effects of SPT design parameters such as solar irradiation, solar receiver emittance, and concentration ratio on system performance were investigated. It was concluded that the addition of basic ORC and PDORC to the intercooled cascade sCO2 cycle improved the thermal efficiency by 2.26% and 6.66% respectively at solar irradiation of 950 W/m2. In the case of basic ORC and PDORC, the waste heat recovery ratios were 0.1197 and 0.1775, respectively. It was also discovered that configuration-2 performed better than configuration-1 in terms of waste heat recovery. The combined cycle’s performance can be improved even more by lowering solar emittance and increasing the concentration ratio.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance comparison of basic and parallel double evaporator Organic Rankine Cycle integrated with solar based supercritical CO2 cycle\",\"authors\":\"Yunis Khan, Radhey SHYAM MISHRA\",\"doi\":\"10.18186/thermal.1293026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance comparison of basic organic Rankine cycle (ORC) and parallel double evapora-tor ORC (PDORC) integrated with solar power tower (SPT) driven intercooled cascade sCO2 (supercritical carbon dioxide) cycle was carried out in present study. The intercooled cascade sCO2 cycle/ORC (configuration-1) and the intercooled cascade sCO2 cycle/PDORC (configu-ration-2) were considered for comparison on basis of parametric analysis. The effects of SPT design parameters such as solar irradiation, solar receiver emittance, and concentration ratio on system performance were investigated. It was concluded that the addition of basic ORC and PDORC to the intercooled cascade sCO2 cycle improved the thermal efficiency by 2.26% and 6.66% respectively at solar irradiation of 950 W/m2. In the case of basic ORC and PDORC, the waste heat recovery ratios were 0.1197 and 0.1775, respectively. It was also discovered that configuration-2 performed better than configuration-1 in terms of waste heat recovery. The combined cycle’s performance can be improved even more by lowering solar emittance and increasing the concentration ratio.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1293026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1293026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本研究对基础有机朗肯循环(ORC)和并联双蒸发器ORC(PDORC)与太阳能塔(SPT)驱动的中冷级联sCO2(超临界二氧化碳)循环的性能进行了比较。在参数分析的基础上,考虑了中冷级联sCO2循环/ORC(配置1)和中冷级联sCO2循环/PORC(配置2)进行比较。研究了SPT设计参数,如太阳辐射、太阳能接收器发射率和浓度比对系统性能的影响。结果表明,在950W/m2的太阳辐射下,在中冷级联sCO2循环中添加碱性ORC和PDORC分别使热效率提高了2.26%和6.66%。在碱性ORC和PDORC的情况下,废热回收率分别为0.1197和0.1775。还发现,在废热回收方面,配置-2比配置-1表现得更好。通过降低太阳发射率和提高集中率,联合循环的性能可以得到更大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of basic and parallel double evaporator Organic Rankine Cycle integrated with solar based supercritical CO2 cycle
Performance comparison of basic organic Rankine cycle (ORC) and parallel double evapora-tor ORC (PDORC) integrated with solar power tower (SPT) driven intercooled cascade sCO2 (supercritical carbon dioxide) cycle was carried out in present study. The intercooled cascade sCO2 cycle/ORC (configuration-1) and the intercooled cascade sCO2 cycle/PDORC (configu-ration-2) were considered for comparison on basis of parametric analysis. The effects of SPT design parameters such as solar irradiation, solar receiver emittance, and concentration ratio on system performance were investigated. It was concluded that the addition of basic ORC and PDORC to the intercooled cascade sCO2 cycle improved the thermal efficiency by 2.26% and 6.66% respectively at solar irradiation of 950 W/m2. In the case of basic ORC and PDORC, the waste heat recovery ratios were 0.1197 and 0.1775, respectively. It was also discovered that configuration-2 performed better than configuration-1 in terms of waste heat recovery. The combined cycle’s performance can be improved even more by lowering solar emittance and increasing the concentration ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信