计算机辅助药物设计的深度机器学习

J. Bajorath
{"title":"计算机辅助药物设计的深度机器学习","authors":"J. Bajorath","doi":"10.3389/fddsv.2022.829043","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning (DL) has led to new scientific developments with immediate implications for computer-aided drug design (CADD). These include advances in both small molecular and macromolecular modeling, as highlighted herein. Going forward, these developments also challenge CADD in different ways and require further progress to fully realize their potential for drug discovery. For CADD, these are exciting times and at the very least, the dynamics of the discipline will further increase.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Machine Learning for Computer-Aided Drug Design\",\"authors\":\"J. Bajorath\",\"doi\":\"10.3389/fddsv.2022.829043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep learning (DL) has led to new scientific developments with immediate implications for computer-aided drug design (CADD). These include advances in both small molecular and macromolecular modeling, as highlighted herein. Going forward, these developments also challenge CADD in different ways and require further progress to fully realize their potential for drug discovery. For CADD, these are exciting times and at the very least, the dynamics of the discipline will further increase.\",\"PeriodicalId\":73080,\"journal\":{\"name\":\"Frontiers in drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddsv.2022.829043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.829043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,深度学习(DL)带来了新的科学发展,对计算机辅助药物设计(CADD)产生了直接影响。其中包括小分子和大分子建模方面的进展,如本文所强调的。展望未来,这些发展也以不同的方式挑战CADD,需要进一步的进展才能充分发挥其药物发现的潜力。对于CADD来说,这是一个激动人心的时刻,至少,该学科的活力将进一步增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Machine Learning for Computer-Aided Drug Design
In recent years, deep learning (DL) has led to new scientific developments with immediate implications for computer-aided drug design (CADD). These include advances in both small molecular and macromolecular modeling, as highlighted herein. Going forward, these developments also challenge CADD in different ways and require further progress to fully realize their potential for drug discovery. For CADD, these are exciting times and at the very least, the dynamics of the discipline will further increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信