Gysin序列与C*-代数的SU(2)对称性

IF 1.1 Q1 MATHEMATICS
F. Arici, Jens Kaad
{"title":"Gysin序列与C*-代数的SU(2)对称性","authors":"F. Arici, Jens Kaad","doi":"10.1112/tlm3.12038","DOIUrl":null,"url":null,"abstract":"Motivated by the study of symmetries of C∗ ‐algebras, as well as by multivariate operator theory, we introduce the notion of an SU(2) ‐equivariant subproduct system of Hilbert spaces. We analyse the resulting Toeplitz and Cuntz–Pimsner algebras and provide results about their topological invariants through Kasparov's bivariant K ‐theory. In particular, starting from an irreducible representation of SU(2) , we show that the corresponding Toeplitz algebra is equivariantly KK ‐equivalent to the algebra of complex numbers. In this way, we obtain a six‐term exact sequence of K ‐groups containing a noncommutative analogue of the Euler class.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gysin sequences and SU(2) ‐symmetries of C∗ ‐algebras\",\"authors\":\"F. Arici, Jens Kaad\",\"doi\":\"10.1112/tlm3.12038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the study of symmetries of C∗ ‐algebras, as well as by multivariate operator theory, we introduce the notion of an SU(2) ‐equivariant subproduct system of Hilbert spaces. We analyse the resulting Toeplitz and Cuntz–Pimsner algebras and provide results about their topological invariants through Kasparov's bivariant K ‐theory. In particular, starting from an irreducible representation of SU(2) , we show that the corresponding Toeplitz algebra is equivariantly KK ‐equivalent to the algebra of complex numbers. In this way, we obtain a six‐term exact sequence of K ‐groups containing a noncommutative analogue of the Euler class.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

受C*-代数对称性研究以及多元算子理论的启发,我们引入了Hilbert空间的SU(2)-等变子产品系统的概念。我们分析了由此产生的Toeplitz和Cuntz-Pimsner代数,并通过Kasparov的双变K-理论给出了关于它们的拓扑不变量的结果。特别地,从SU(2)的一个不可约表示开始,我们证明了相应的Toeplitz代数等价于复数代数。通过这种方式,我们获得了包含欧拉类的非对易类似物的K群的六项精确序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gysin sequences and SU(2) ‐symmetries of C∗ ‐algebras
Motivated by the study of symmetries of C∗ ‐algebras, as well as by multivariate operator theory, we introduce the notion of an SU(2) ‐equivariant subproduct system of Hilbert spaces. We analyse the resulting Toeplitz and Cuntz–Pimsner algebras and provide results about their topological invariants through Kasparov's bivariant K ‐theory. In particular, starting from an irreducible representation of SU(2) , we show that the corresponding Toeplitz algebra is equivariantly KK ‐equivalent to the algebra of complex numbers. In this way, we obtain a six‐term exact sequence of K ‐groups containing a noncommutative analogue of the Euler class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信