通过Web折叠旋转对称Tableaux

Pub Date : 2023-05-29 DOI:10.1007/s00026-023-00648-0
Kevin Purbhoo, Shelley Wu
{"title":"通过Web折叠旋转对称Tableaux","authors":"Kevin Purbhoo,&nbsp;Shelley Wu","doi":"10.1007/s00026-023-00648-0","DOIUrl":null,"url":null,"abstract":"<div><p>Rectangular standard Young tableaux with 2 or 3 rows are in bijection with <span>\\(U_q(\\mathfrak {sl}_2)\\)</span>-webs and <span>\\(U_q(\\mathfrak {sl}_3)\\)</span>-webs, respectively. When <span>\\(\\mathcal {W}\\)</span> is a web with a reflection symmetry, the corresponding tableau <span>\\(T_\\mathcal {W}\\)</span> has a rotational symmetry. Folding <span>\\(T_\\mathcal {W}\\)</span> transforms it into a domino tableau <span>\\(D_\\mathcal {W}\\)</span>. We study the relationships between these correspondences. For 2-row tableaux, folding a rotationally symmetric tableau corresponds to “literally folding” the web along its axis of symmetry. For 3-row tableaux, we give simple algorithms, which provide direct bijective maps between symmetrical webs and domino tableaux (in both directions). These details of these algorithms reflect the intuitive idea that <span>\\(D_\\mathcal {W}\\)</span> corresponds to “<span>\\(\\mathcal {W}\\)</span> modulo symmetry”.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Folding Rotationally Symmetric Tableaux via Webs\",\"authors\":\"Kevin Purbhoo,&nbsp;Shelley Wu\",\"doi\":\"10.1007/s00026-023-00648-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rectangular standard Young tableaux with 2 or 3 rows are in bijection with <span>\\\\(U_q(\\\\mathfrak {sl}_2)\\\\)</span>-webs and <span>\\\\(U_q(\\\\mathfrak {sl}_3)\\\\)</span>-webs, respectively. When <span>\\\\(\\\\mathcal {W}\\\\)</span> is a web with a reflection symmetry, the corresponding tableau <span>\\\\(T_\\\\mathcal {W}\\\\)</span> has a rotational symmetry. Folding <span>\\\\(T_\\\\mathcal {W}\\\\)</span> transforms it into a domino tableau <span>\\\\(D_\\\\mathcal {W}\\\\)</span>. We study the relationships between these correspondences. For 2-row tableaux, folding a rotationally symmetric tableau corresponds to “literally folding” the web along its axis of symmetry. For 3-row tableaux, we give simple algorithms, which provide direct bijective maps between symmetrical webs and domino tableaux (in both directions). These details of these algorithms reflect the intuitive idea that <span>\\\\(D_\\\\mathcal {W}\\\\)</span> corresponds to “<span>\\\\(\\\\mathcal {W}\\\\)</span> modulo symmetry”.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00648-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00648-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有 2 行或 3 行的矩形标准杨表分别与 \(U_q(\mathfrak {sl}_2)\webs 和 \(U_q(\mathfrak {sl}_3)\webs 成双射关系。当 \(\mathcal {W}\) 是一个具有反射对称性的网时,相应的 tableau \(T_\mathcal {W}\) 具有旋转对称性。折叠 \(T_\mathcal {W}\)会将其转化为多米诺表头 \(D_\mathcal {W}\)。我们研究这些对应关系。对于两行台构图,折叠旋转对称台构图相当于沿着它的对称轴 "折叠 "网。对于 3 行台构,我们给出了简单的算法,这些算法提供了对称网和多米诺台构之间(两个方向)的直接双射映射。这些算法的细节反映了这样一个直观的想法:\(D_\mathcal {W}\) 对应于"\(\mathcal {W}\) modulo symmetry"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Folding Rotationally Symmetric Tableaux via Webs

Folding Rotationally Symmetric Tableaux via Webs

分享
查看原文
Folding Rotationally Symmetric Tableaux via Webs

Rectangular standard Young tableaux with 2 or 3 rows are in bijection with \(U_q(\mathfrak {sl}_2)\)-webs and \(U_q(\mathfrak {sl}_3)\)-webs, respectively. When \(\mathcal {W}\) is a web with a reflection symmetry, the corresponding tableau \(T_\mathcal {W}\) has a rotational symmetry. Folding \(T_\mathcal {W}\) transforms it into a domino tableau \(D_\mathcal {W}\). We study the relationships between these correspondences. For 2-row tableaux, folding a rotationally symmetric tableau corresponds to “literally folding” the web along its axis of symmetry. For 3-row tableaux, we give simple algorithms, which provide direct bijective maps between symmetrical webs and domino tableaux (in both directions). These details of these algorithms reflect the intuitive idea that \(D_\mathcal {W}\) corresponds to “\(\mathcal {W}\) modulo symmetry”.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信