{"title":"偏对称2张量场协变导数散度下界的反例","authors":"Stefano Borghini, Lorenzo Mazzieri","doi":"10.1007/s10455-023-09896-y","DOIUrl":null,"url":null,"abstract":"<div><p>In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim powerful classification results: Most notably, it has been employed to propose a proof of a Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature (Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture (Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse conjecture). In the present note, we point out an issue in the argument proposed in Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to the estimate.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09896-y.pdf","citationCount":"4","resultStr":"{\"title\":\"Counterexamples to a divergence lower bound for the covariant derivative of skew-symmetric 2-tensor fields\",\"authors\":\"Stefano Borghini, Lorenzo Mazzieri\",\"doi\":\"10.1007/s10455-023-09896-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim powerful classification results: Most notably, it has been employed to propose a proof of a Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature (Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture (Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse conjecture). In the present note, we point out an issue in the argument proposed in Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to the estimate.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"63 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09896-y.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09896-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09896-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counterexamples to a divergence lower bound for the covariant derivative of skew-symmetric 2-tensor fields
In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim powerful classification results: Most notably, it has been employed to propose a proof of a Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature (Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture (Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse conjecture). In the present note, we point out an issue in the argument proposed in Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to the estimate.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.