D. Łydżba, A. Różański, M. Sobótka, Michał Pachnicz, Szczepan Grosel, J. Rainer
{"title":"干式抗洪水库大坝设计方案优化的综合方法","authors":"D. Łydżba, A. Różański, M. Sobótka, Michał Pachnicz, Szczepan Grosel, J. Rainer","doi":"10.2478/sgem-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract The article proposes the methodology of designing dams of dry flood control reservoirs. The algorithm is developed so as to meet all the requirements given in the Eurocode 7 and, at the same time, to be efficient in terms of necessary calculation time. Furthermore, the presented numerical procedure enables the optimization of design solutions, e.g. the depth and length of the anti-filtration barrier, by means of parametric analyses. The approach assumes the use of numerical methods, in particular, finite element (FE) analysis. Three-dimensional (3D) reconstruction of the terrain topography and subsoil layer arrangement performed in step (1) sets the base for further analyses. In step (2), the filtration phenomena are assessed based on the 3D analysis of a transient groundwater flow. In step (3), the state of displacement is evaluated and the stability is verified for all the relevant phases of construction and operation of the facility, in particular, in the course of simulated flood detention. The analyses in step (3) are carried out on 2D models corresponding to the design cross-sections of the dam. This significantly reduces the computation time (compared to 3D analysis) and, at the same time, provides a safe estimate of factor of safety. The performance of the proposed algorithm is shown on the numerical examples of the computations concerning the dam of Szalejów Górny dry anti-flood reservoir located in Poland.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"270 - 284"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comprehensive approach to the optimization of design solutions for dry anti-flood reservoir dams\",\"authors\":\"D. Łydżba, A. Różański, M. Sobótka, Michał Pachnicz, Szczepan Grosel, J. Rainer\",\"doi\":\"10.2478/sgem-2021-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article proposes the methodology of designing dams of dry flood control reservoirs. The algorithm is developed so as to meet all the requirements given in the Eurocode 7 and, at the same time, to be efficient in terms of necessary calculation time. Furthermore, the presented numerical procedure enables the optimization of design solutions, e.g. the depth and length of the anti-filtration barrier, by means of parametric analyses. The approach assumes the use of numerical methods, in particular, finite element (FE) analysis. Three-dimensional (3D) reconstruction of the terrain topography and subsoil layer arrangement performed in step (1) sets the base for further analyses. In step (2), the filtration phenomena are assessed based on the 3D analysis of a transient groundwater flow. In step (3), the state of displacement is evaluated and the stability is verified for all the relevant phases of construction and operation of the facility, in particular, in the course of simulated flood detention. The analyses in step (3) are carried out on 2D models corresponding to the design cross-sections of the dam. This significantly reduces the computation time (compared to 3D analysis) and, at the same time, provides a safe estimate of factor of safety. The performance of the proposed algorithm is shown on the numerical examples of the computations concerning the dam of Szalejów Górny dry anti-flood reservoir located in Poland.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"43 1\",\"pages\":\"270 - 284\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2021-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
A comprehensive approach to the optimization of design solutions for dry anti-flood reservoir dams
Abstract The article proposes the methodology of designing dams of dry flood control reservoirs. The algorithm is developed so as to meet all the requirements given in the Eurocode 7 and, at the same time, to be efficient in terms of necessary calculation time. Furthermore, the presented numerical procedure enables the optimization of design solutions, e.g. the depth and length of the anti-filtration barrier, by means of parametric analyses. The approach assumes the use of numerical methods, in particular, finite element (FE) analysis. Three-dimensional (3D) reconstruction of the terrain topography and subsoil layer arrangement performed in step (1) sets the base for further analyses. In step (2), the filtration phenomena are assessed based on the 3D analysis of a transient groundwater flow. In step (3), the state of displacement is evaluated and the stability is verified for all the relevant phases of construction and operation of the facility, in particular, in the course of simulated flood detention. The analyses in step (3) are carried out on 2D models corresponding to the design cross-sections of the dam. This significantly reduces the computation time (compared to 3D analysis) and, at the same time, provides a safe estimate of factor of safety. The performance of the proposed algorithm is shown on the numerical examples of the computations concerning the dam of Szalejów Górny dry anti-flood reservoir located in Poland.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories