标准火灾下圆形和管状混凝土柱设计的分区法扩展

IF 0.9 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
David Krybus, Marcus Achenbach, Livia Prifti
{"title":"标准火灾下圆形和管状混凝土柱设计的分区法扩展","authors":"David Krybus, Marcus Achenbach, Livia Prifti","doi":"10.1108/jsfe-01-2023-0009","DOIUrl":null,"url":null,"abstract":"PurposeThe paper aims to deal with the enhancement of a simplified method for the design of concrete columns subject to fire toward applications on circular and tubular cross-sections. The original zone method, developed by Hertz as a plastic design method, has been extended by Achenbach for the use as a nonlinear method. This proposed extended zone method (EZM) is verified by checking the theoretical background and is successfully validated by the recalculation of laboratory tests.Design/methodology/approachThe zone method assumes a reduction of a cross-section by a “damaged” zone. The remaining area is modeled with the constant, temperature-dependent material properties. The equations for the calculation of the damaged zone to model the loss of cross-section resistance or stiffness are derived. The proposed equations are validated by the recalculation of laboratory test and compared to the results of the advanced method (AM).FindingsIt can be shown that the EZM is suitable for the check of the fire resistance of circular concrete columns and leads to a safe and economic design. The method provides a suitable alternative to more sophisticated AM. The further extension toward tubular spun columns is discussed und is the object of the ongoing research.Originality/valuePresented enhancement extends the range of applications of the EZMs toward circular and tubular cross sections, which has previously not been examined.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of the zone method for the design of circular and tubular concrete columns subjected to a standard fire\",\"authors\":\"David Krybus, Marcus Achenbach, Livia Prifti\",\"doi\":\"10.1108/jsfe-01-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe paper aims to deal with the enhancement of a simplified method for the design of concrete columns subject to fire toward applications on circular and tubular cross-sections. The original zone method, developed by Hertz as a plastic design method, has been extended by Achenbach for the use as a nonlinear method. This proposed extended zone method (EZM) is verified by checking the theoretical background and is successfully validated by the recalculation of laboratory tests.Design/methodology/approachThe zone method assumes a reduction of a cross-section by a “damaged” zone. The remaining area is modeled with the constant, temperature-dependent material properties. The equations for the calculation of the damaged zone to model the loss of cross-section resistance or stiffness are derived. The proposed equations are validated by the recalculation of laboratory test and compared to the results of the advanced method (AM).FindingsIt can be shown that the EZM is suitable for the check of the fire resistance of circular concrete columns and leads to a safe and economic design. The method provides a suitable alternative to more sophisticated AM. The further extension toward tubular spun columns is discussed und is the object of the ongoing research.Originality/valuePresented enhancement extends the range of applications of the EZMs toward circular and tubular cross sections, which has previously not been examined.\",\"PeriodicalId\":45033,\"journal\":{\"name\":\"Journal of Structural Fire Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Fire Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jsfe-01-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-01-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的本文旨在对一种简化的火灾混凝土柱设计方法在圆形和管状截面上的应用进行改进。Hertz开发的原始区域法是一种塑性设计方法,Achenbach将其扩展为一种非线性方法。通过检查理论背景,验证了所提出的扩展区域方法(EZM),并通过重新计算实验室测试成功验证了该方法。设计/方法/方法分区法假设横截面减少一个“受损”区域。剩余区域采用恒定的、与温度相关的材料特性进行建模。推导了损伤区的计算方程,以模拟横截面阻力或刚度的损失。通过室内试验的重新计算验证了所提出的公式,并与先进方法(AM)的结果进行了比较。该方法为更复杂的AM提供了一种合适的替代方案。讨论了向管状纺丝柱的进一步扩展,这是正在进行的研究的目标。独创性/价值所提出的增强将EZM的应用范围扩展到圆形和管状横截面,而这一点以前尚未得到检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of the zone method for the design of circular and tubular concrete columns subjected to a standard fire
PurposeThe paper aims to deal with the enhancement of a simplified method for the design of concrete columns subject to fire toward applications on circular and tubular cross-sections. The original zone method, developed by Hertz as a plastic design method, has been extended by Achenbach for the use as a nonlinear method. This proposed extended zone method (EZM) is verified by checking the theoretical background and is successfully validated by the recalculation of laboratory tests.Design/methodology/approachThe zone method assumes a reduction of a cross-section by a “damaged” zone. The remaining area is modeled with the constant, temperature-dependent material properties. The equations for the calculation of the damaged zone to model the loss of cross-section resistance or stiffness are derived. The proposed equations are validated by the recalculation of laboratory test and compared to the results of the advanced method (AM).FindingsIt can be shown that the EZM is suitable for the check of the fire resistance of circular concrete columns and leads to a safe and economic design. The method provides a suitable alternative to more sophisticated AM. The further extension toward tubular spun columns is discussed und is the object of the ongoing research.Originality/valuePresented enhancement extends the range of applications of the EZMs toward circular and tubular cross sections, which has previously not been examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Fire Engineering
Journal of Structural Fire Engineering CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
2.20
自引率
10.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信