{"title":"利用软计算评估生物医学应用的当前趋势","authors":"K. Veer, Sachin Kumar","doi":"10.2174/1574893618666230706112826","DOIUrl":null,"url":null,"abstract":"\n\nWith the rapid advancement in analyzing high-volume and complex data, machine learning has become one of the most critical and essential tools for classification and prediction. This study reviews machine learning (ML) and deep learning (DL) methods for the classification and prediction of biological signals. The effective utilization of the latest technology in numerous applications, along with various challenges and possible solutions, is the main objective of this present study. A PICO-based systematic review is performed to analyze the applications of ML and DL in different biomedical signals, viz. electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and wrist pulse signal from 2015 to 2022. From this analysis, one can measure machine learning's effectiveness and key characteristics of deep learning. This literature survey finds a clear shift toward deep learning techniques compared to machine learning used in the classification of biomedical signals.\n","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Current Trends in Biomedical Applications Using Soft Computing\",\"authors\":\"K. Veer, Sachin Kumar\",\"doi\":\"10.2174/1574893618666230706112826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nWith the rapid advancement in analyzing high-volume and complex data, machine learning has become one of the most critical and essential tools for classification and prediction. This study reviews machine learning (ML) and deep learning (DL) methods for the classification and prediction of biological signals. The effective utilization of the latest technology in numerous applications, along with various challenges and possible solutions, is the main objective of this present study. A PICO-based systematic review is performed to analyze the applications of ML and DL in different biomedical signals, viz. electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and wrist pulse signal from 2015 to 2022. From this analysis, one can measure machine learning's effectiveness and key characteristics of deep learning. This literature survey finds a clear shift toward deep learning techniques compared to machine learning used in the classification of biomedical signals.\\n\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1574893618666230706112826\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1574893618666230706112826","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Evaluation of Current Trends in Biomedical Applications Using Soft Computing
With the rapid advancement in analyzing high-volume and complex data, machine learning has become one of the most critical and essential tools for classification and prediction. This study reviews machine learning (ML) and deep learning (DL) methods for the classification and prediction of biological signals. The effective utilization of the latest technology in numerous applications, along with various challenges and possible solutions, is the main objective of this present study. A PICO-based systematic review is performed to analyze the applications of ML and DL in different biomedical signals, viz. electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and wrist pulse signal from 2015 to 2022. From this analysis, one can measure machine learning's effectiveness and key characteristics of deep learning. This literature survey finds a clear shift toward deep learning techniques compared to machine learning used in the classification of biomedical signals.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.