闵可夫斯基求和的凸化效应

IF 1.3 Q1 MATHEMATICS
M. Fradelizi, M. Madiman, Arnaud Marsiglietti, A. Zvavitch
{"title":"闵可夫斯基求和的凸化效应","authors":"M. Fradelizi, M. Madiman, Arnaud Marsiglietti, A. Zvavitch","doi":"10.4171/EMSS/26","DOIUrl":null,"url":null,"abstract":"Let us define for a compact set $A \\subset \\mathbb{R}^n$ the sequence $$ A(k) = \\left\\{\\frac{a_1+\\cdots +a_k}{k}: a_1, \\ldots, a_k\\in A\\right\\}=\\frac{1}{k}\\Big(\\underset{k\\ {\\rm times}}{\\underbrace{A + \\cdots + A}}\\Big). $$ It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that $A(k)$ approaches the convex hull of $A$ in the Hausdorff distance induced by the Euclidean norm as $k$ goes to $\\infty$. We explore in this survey how exactly $A(k)$ approaches the convex hull of $A$, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on $\\mathbb{R}^n$, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of $A(k)$ does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets $A$ with special structure. On the other hand, Schneider's index possesses a strong monotonicity property along the sequence $A(k)$, and both the Hausdorff distance and effective standard deviation are eventually monotone (once $k$ exceeds $n$). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/EMSS/26","citationCount":"27","resultStr":"{\"title\":\"The convexification effect of Minkowski summation\",\"authors\":\"M. Fradelizi, M. Madiman, Arnaud Marsiglietti, A. Zvavitch\",\"doi\":\"10.4171/EMSS/26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let us define for a compact set $A \\\\subset \\\\mathbb{R}^n$ the sequence $$ A(k) = \\\\left\\\\{\\\\frac{a_1+\\\\cdots +a_k}{k}: a_1, \\\\ldots, a_k\\\\in A\\\\right\\\\}=\\\\frac{1}{k}\\\\Big(\\\\underset{k\\\\ {\\\\rm times}}{\\\\underbrace{A + \\\\cdots + A}}\\\\Big). $$ It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that $A(k)$ approaches the convex hull of $A$ in the Hausdorff distance induced by the Euclidean norm as $k$ goes to $\\\\infty$. We explore in this survey how exactly $A(k)$ approaches the convex hull of $A$, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on $\\\\mathbb{R}^n$, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of $A(k)$ does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets $A$ with special structure. On the other hand, Schneider's index possesses a strong monotonicity property along the sequence $A(k)$, and both the Hausdorff distance and effective standard deviation are eventually monotone (once $k$ exceeds $n$). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.\",\"PeriodicalId\":43833,\"journal\":{\"name\":\"EMS Surveys in Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/EMSS/26\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMS Surveys in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/EMSS/26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/EMSS/26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

摘要

让我们为紧集$a\subet\mathbb{R}^n$定义序列$$a(k)=\left\{\frac{a_1+\cdots+a_k}{k}:a_1,\ldots,a_k\ in a\right\}=\ frac{1}Shapley、Folkman和Starr(1969)以及Emerson和Greenleaf(1969)独立证明,当$k$变为$\infty$时,$A(k)$在欧氏范数诱导的Hausdorff距离中接近$A$的凸包。在这项调查中,我们探讨了$A(k)$是如何精确地接近$A$的凸包的,更一般地,探讨了可能不同紧集的Minkowski和是如何接近凸性的,这是通过各种非凸性指数来衡量的。所考虑的非凸性指数包括由$\mathbb{R}^n$上的任何范数引起的Hausdorff距离、体积亏空(体积的差)、Schneider(1975)引入的非凸指数以及有效标准差或内半径。在首先阐明了这些以前未知或分散在文献中的各种非凸性指数之间的相互关系后,我们发现$A(k)$的体积赤字在维度12或以上不会单调减少到0,从而证伪了Bobkov等人的猜想。(2011),即使他们的猜想在维度1和某些具有特殊结构的集合$A$中被证明是真的。另一方面,Schneider指数在序列$a(k)$上具有强单调性,并且Hausdorff距离和有效标准差最终都是单调的(一旦$k$超过$n$)。在此过程中,我们得到了关于紧集的Minkowski和的体积的新不等式,证伪了Dyn和Farkhi(2004)的一个猜想,证明了我们的结果在组合差异理论中的应用,并提出了一些值得进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The convexification effect of Minkowski summation
Let us define for a compact set $A \subset \mathbb{R}^n$ the sequence $$ A(k) = \left\{\frac{a_1+\cdots +a_k}{k}: a_1, \ldots, a_k\in A\right\}=\frac{1}{k}\Big(\underset{k\ {\rm times}}{\underbrace{A + \cdots + A}}\Big). $$ It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that $A(k)$ approaches the convex hull of $A$ in the Hausdorff distance induced by the Euclidean norm as $k$ goes to $\infty$. We explore in this survey how exactly $A(k)$ approaches the convex hull of $A$, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on $\mathbb{R}^n$, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of $A(k)$ does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets $A$ with special structure. On the other hand, Schneider's index possesses a strong monotonicity property along the sequence $A(k)$, and both the Hausdorff distance and effective standard deviation are eventually monotone (once $k$ exceeds $n$). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信