对现实催化反应条件下单个纳米粒子行为的研究

Q1 Materials Science
D. Martin, Donato Decarolis, R. Tucoulou, G. Martínez-Criado, Andrew M. Beale
{"title":"对现实催化反应条件下单个纳米粒子行为的研究","authors":"D. Martin, Donato Decarolis, R. Tucoulou, G. Martínez-Criado, Andrew M. Beale","doi":"10.1080/2055074X.2016.1277655","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that particle size plays an important role in catalytic activity although the reason(s) why significant changes in activity are observed to occur with small changes in size are not well understood. The presence of particular facets, metal-support interactions, and redox state etc., are also capable of playing a role. The difficulty in realising which features are pertinent in a catalytic process stems from issues regarding sample complexity in typical heterogeneous catalysts, as well as technical challenges with instruments used to investigate samples in terms of their sensitivity and capability to distinguish between a specific vs. ensemble response in catalytically active vs. spectator species. We show here how the combination of using a synthesis method which achieves a discrete dispersion of metal Pd nanoparticles with a very narrow particle size distribution (σ ~ 1 nm) in combination with nano-beam X-ray spectroscopy allows us to follow the changes in redox state with time. Importantly, the data are obtained in one example, from an illuminating spot containing ca. 20 nanoparticles with an extremely small size distribution.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2016.1277655","citationCount":"5","resultStr":"{\"title\":\"Towards the interrogation of the behaviour of a single nanoparticle under realistic catalytic reaction conditions\",\"authors\":\"D. Martin, Donato Decarolis, R. Tucoulou, G. Martínez-Criado, Andrew M. Beale\",\"doi\":\"10.1080/2055074X.2016.1277655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that particle size plays an important role in catalytic activity although the reason(s) why significant changes in activity are observed to occur with small changes in size are not well understood. The presence of particular facets, metal-support interactions, and redox state etc., are also capable of playing a role. The difficulty in realising which features are pertinent in a catalytic process stems from issues regarding sample complexity in typical heterogeneous catalysts, as well as technical challenges with instruments used to investigate samples in terms of their sensitivity and capability to distinguish between a specific vs. ensemble response in catalytically active vs. spectator species. We show here how the combination of using a synthesis method which achieves a discrete dispersion of metal Pd nanoparticles with a very narrow particle size distribution (σ ~ 1 nm) in combination with nano-beam X-ray spectroscopy allows us to follow the changes in redox state with time. Importantly, the data are obtained in one example, from an illuminating spot containing ca. 20 nanoparticles with an extremely small size distribution.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2055074X.2016.1277655\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2055074X.2016.1277655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2016.1277655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5

摘要

摘要众所周知,颗粒大小在催化活性中起着重要作用,尽管观察到活性发生显著变化而颗粒大小发生微小变化的原因尚不清楚。特定晶面的存在、金属-载体相互作用和氧化还原状态等也能够发挥作用。实现催化过程中哪些特征相关的困难源于典型多相催化剂中样品复杂性的问题,以及用于研究样品的仪器在其灵敏度和区分催化活性物种与观赏物种中的特定反应与整体反应的能力方面的技术挑战。我们在这里展示了如何将合成方法与纳米束X射线光谱相结合,使我们能够跟踪氧化还原状态随时间的变化。合成方法实现了具有非常窄粒度分布(σ~1nm)的金属Pd纳米颗粒的离散分散。重要的是,在一个例子中,数据是从含有ca的照射点获得的。20个具有极小尺寸分布的纳米颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the interrogation of the behaviour of a single nanoparticle under realistic catalytic reaction conditions
Abstract It is well known that particle size plays an important role in catalytic activity although the reason(s) why significant changes in activity are observed to occur with small changes in size are not well understood. The presence of particular facets, metal-support interactions, and redox state etc., are also capable of playing a role. The difficulty in realising which features are pertinent in a catalytic process stems from issues regarding sample complexity in typical heterogeneous catalysts, as well as technical challenges with instruments used to investigate samples in terms of their sensitivity and capability to distinguish between a specific vs. ensemble response in catalytically active vs. spectator species. We show here how the combination of using a synthesis method which achieves a discrete dispersion of metal Pd nanoparticles with a very narrow particle size distribution (σ ~ 1 nm) in combination with nano-beam X-ray spectroscopy allows us to follow the changes in redox state with time. Importantly, the data are obtained in one example, from an illuminating spot containing ca. 20 nanoparticles with an extremely small size distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信