{"title":"辐射传递问题的渐近PN逼近","authors":"Re'em Harel, S. Burov, Shay I. Heizler","doi":"10.1080/23324309.2020.1845738","DOIUrl":null,"url":null,"abstract":"Abstract We study the validity of the time-dependent asymptotic PN approximation in radiative transfer of photons. The time-dependent asymptotic PN is an approximation which uses the standard PN equations with a closure that is based on the asymptotic solution of the exact Boltzmann equation for a homogeneous problem, in space and time. The asymptotic PN approximation for radiative transfer requires careful treatment regarding the closure equation. Specifically, the mean number of particles that are emitted per collision ( ) can be larger than one due to inner or outer radiation sources and the coefficients of the closure must be extended for these cases. Our approximation is tested against a well-known radiative transfer benchmark. It yields excellent results, with almost correct particle velocity that controls the radiative heat-wave fronts.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"390 - 406"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1845738","citationCount":"3","resultStr":"{\"title\":\"Asymptotic PN Approximation in Radiative Transfer Problems\",\"authors\":\"Re'em Harel, S. Burov, Shay I. Heizler\",\"doi\":\"10.1080/23324309.2020.1845738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the validity of the time-dependent asymptotic PN approximation in radiative transfer of photons. The time-dependent asymptotic PN is an approximation which uses the standard PN equations with a closure that is based on the asymptotic solution of the exact Boltzmann equation for a homogeneous problem, in space and time. The asymptotic PN approximation for radiative transfer requires careful treatment regarding the closure equation. Specifically, the mean number of particles that are emitted per collision ( ) can be larger than one due to inner or outer radiation sources and the coefficients of the closure must be extended for these cases. Our approximation is tested against a well-known radiative transfer benchmark. It yields excellent results, with almost correct particle velocity that controls the radiative heat-wave fronts.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"50 1\",\"pages\":\"390 - 406\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2020.1845738\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2020.1845738\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1845738","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Asymptotic PN Approximation in Radiative Transfer Problems
Abstract We study the validity of the time-dependent asymptotic PN approximation in radiative transfer of photons. The time-dependent asymptotic PN is an approximation which uses the standard PN equations with a closure that is based on the asymptotic solution of the exact Boltzmann equation for a homogeneous problem, in space and time. The asymptotic PN approximation for radiative transfer requires careful treatment regarding the closure equation. Specifically, the mean number of particles that are emitted per collision ( ) can be larger than one due to inner or outer radiation sources and the coefficients of the closure must be extended for these cases. Our approximation is tested against a well-known radiative transfer benchmark. It yields excellent results, with almost correct particle velocity that controls the radiative heat-wave fronts.
期刊介绍:
Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.