用团覆盖随机超图的边

Pub Date : 2022-07-12 DOI:10.7151/dmgt.2431
V. Rödl, A. Rucinski
{"title":"用团覆盖随机超图的边","authors":"V. Rödl, A. Rucinski","doi":"10.7151/dmgt.2431","DOIUrl":null,"url":null,"abstract":"Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covering the Edges of a Random Hypergraph by Cliques\",\"authors\":\"V. Rödl, A. Rucinski\",\"doi\":\"10.7151/dmgt.2431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们确定了二项式,r-一致,随机超图G(r)(n,p),p固定边的最小团覆盖的数量级。在这样做的过程中,我们结合了Frieze和Reed[用集团覆盖随机图的边,Combinatorica 15(1995)489–497]和Guo,Patten,Warnke[随机图的布拉格维度,提交出版的手稿]中图格(r=2)的证明的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Covering the Edges of a Random Hypergraph by Cliques
Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信