Junhua Guo, Jing-Xing Huang, Tingguo Liu, Jianbin Chen, S. Janaswamy
{"title":"基于大豆秸秆的新型高吸水性材料的合成与表征","authors":"Junhua Guo, Jing-Xing Huang, Tingguo Liu, Jianbin Chen, S. Janaswamy","doi":"10.1515/secm-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract A novel superabsorbent copolymer (SAP) was developed by grafting acrylic acid onto the pretreated soybean straw (PSBS) using gamma-ray irradiation. The structure of soybean straw, treated soybean straw, and SAP were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). The effect of irradiation dose, the dosage of cross-link agent, and the monomer ratio of the graft copolymer on the water absorbency of the SAP was investigated. The highest water absorbency of 1,489 g/g in distilled water and 56 g/g in 0.9 wt% NaCl solution was obtained, when the ratio of acrylic acid (AA) to PSBS was 6:1. This irradiation technique is superior to traditional methods with advantages such as less heavy pollution, low-energy consumption, and high-water retention performance. The outcome is deemed to open up new pathways to synthesize environmentally safe superabsorbents with applications in the food, pharmaceutical, and medical industries.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"65 - 73"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel superabsorbent material based on soybean straw: Synthesis and characterization\",\"authors\":\"Junhua Guo, Jing-Xing Huang, Tingguo Liu, Jianbin Chen, S. Janaswamy\",\"doi\":\"10.1515/secm-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A novel superabsorbent copolymer (SAP) was developed by grafting acrylic acid onto the pretreated soybean straw (PSBS) using gamma-ray irradiation. The structure of soybean straw, treated soybean straw, and SAP were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). The effect of irradiation dose, the dosage of cross-link agent, and the monomer ratio of the graft copolymer on the water absorbency of the SAP was investigated. The highest water absorbency of 1,489 g/g in distilled water and 56 g/g in 0.9 wt% NaCl solution was obtained, when the ratio of acrylic acid (AA) to PSBS was 6:1. This irradiation technique is superior to traditional methods with advantages such as less heavy pollution, low-energy consumption, and high-water retention performance. The outcome is deemed to open up new pathways to synthesize environmentally safe superabsorbents with applications in the food, pharmaceutical, and medical industries.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"29 1\",\"pages\":\"65 - 73\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
A novel superabsorbent material based on soybean straw: Synthesis and characterization
Abstract A novel superabsorbent copolymer (SAP) was developed by grafting acrylic acid onto the pretreated soybean straw (PSBS) using gamma-ray irradiation. The structure of soybean straw, treated soybean straw, and SAP were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). The effect of irradiation dose, the dosage of cross-link agent, and the monomer ratio of the graft copolymer on the water absorbency of the SAP was investigated. The highest water absorbency of 1,489 g/g in distilled water and 56 g/g in 0.9 wt% NaCl solution was obtained, when the ratio of acrylic acid (AA) to PSBS was 6:1. This irradiation technique is superior to traditional methods with advantages such as less heavy pollution, low-energy consumption, and high-water retention performance. The outcome is deemed to open up new pathways to synthesize environmentally safe superabsorbents with applications in the food, pharmaceutical, and medical industries.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.