基于多目标拥塞度量的车载Ad-Hoc网络人工生态系统优化的有效数据传播

Q1 Mathematics
Nagaraj B. Patil, Shaeista Begum
{"title":"基于多目标拥塞度量的车载Ad-Hoc网络人工生态系统优化的有效数据传播","authors":"Nagaraj B. Patil, Shaeista Begum","doi":"10.5815/ijcnis.2023.01.05","DOIUrl":null,"url":null,"abstract":"Vehicular Ad-hoc Network (VANET) is a growing technology that utilizes moving vehicles as mobile nodes for exchanging essential information between users. Unlike the conventional radio frequency based VANET, the Visible Light Communication (VLC) is used in the VANET to improve the throughput. However, the road safety is considered as a significant issue for users of VANET. Therefore, congestion-aware routing is required to be developed for enhancing road safety, because it creates a collision between the vehicles that causes packet loss. In this paper, the Multi Objective Congestion Metric based Artificial Ecosystem Optimization (MOCMAEO) is proposed to enhance road safety. The MOCMAEO is used along with the Ad hoc On-Demand Distance Vector (AODV) routing protocol for generating the optimal routing path between the source node to the Road Side Unit (RSU). Specifically, the performance of the MOCMAEO is improved using the multi-objective fitness functions such as congestion metric, residual energy, distance, and some hops. The performance of the MOCMAEO is analyzed by means of Packet Delivery Ratio (PDR), throughput, delay, and Normalized Routing Load (NRL). The PSO based geocast routing protocols such as LARgeoOPT, DREAMgeoOPT, and ZRPgeoOPT are used to evaluate the performance of the MOCMAEO method. The PDR of the MOCMAEO method is 99.92 % for 80 nodes, which is high when compared to the existing methods.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Data Dissemination Using Multi Objective Congestion Metric Based Artificial Ecosystem Optimization for Vehicular Ad-Hoc Network\",\"authors\":\"Nagaraj B. Patil, Shaeista Begum\",\"doi\":\"10.5815/ijcnis.2023.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad-hoc Network (VANET) is a growing technology that utilizes moving vehicles as mobile nodes for exchanging essential information between users. Unlike the conventional radio frequency based VANET, the Visible Light Communication (VLC) is used in the VANET to improve the throughput. However, the road safety is considered as a significant issue for users of VANET. Therefore, congestion-aware routing is required to be developed for enhancing road safety, because it creates a collision between the vehicles that causes packet loss. In this paper, the Multi Objective Congestion Metric based Artificial Ecosystem Optimization (MOCMAEO) is proposed to enhance road safety. The MOCMAEO is used along with the Ad hoc On-Demand Distance Vector (AODV) routing protocol for generating the optimal routing path between the source node to the Road Side Unit (RSU). Specifically, the performance of the MOCMAEO is improved using the multi-objective fitness functions such as congestion metric, residual energy, distance, and some hops. The performance of the MOCMAEO is analyzed by means of Packet Delivery Ratio (PDR), throughput, delay, and Normalized Routing Load (NRL). The PSO based geocast routing protocols such as LARgeoOPT, DREAMgeoOPT, and ZRPgeoOPT are used to evaluate the performance of the MOCMAEO method. The PDR of the MOCMAEO method is 99.92 % for 80 nodes, which is high when compared to the existing methods.\",\"PeriodicalId\":36488,\"journal\":{\"name\":\"International Journal of Computer Network and Information Security\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Network and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijcnis.2023.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2023.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

车载自组织网络(VANET)是一种不断发展的技术,它利用移动车辆作为移动节点在用户之间交换重要信息。与传统的基于射频的VANET不同,在VANET中使用可见光通信(VLC)来提高吞吐量。然而,道路安全被认为是VANET用户的一个重要问题。因此,为了提高道路安全,需要开发拥堵感知路由,因为它会在车辆之间产生碰撞,导致数据包丢失。本文提出了基于多目标拥堵度量的人工生态系统优化(MOCMAEO)来提高道路安全性。MOCMAEO与自组织按需距离矢量(AODV)路由协议一起使用,用于生成从源节点到路侧单元(RSU)之间的最优路由路径。具体而言,使用多目标适应度函数,如拥塞度量、剩余能量、距离和一些跳数,提高了MOCMAEO的性能。通过分组传送率(PDR)、吞吐量、延迟和归一化路由负载(NRL)来分析MOCMAEO的性能。基于PSO的地理广播路由协议,如LARgeoOPT、DREAMgeoOPT和ZRPgeoOPT,用于评估MOCMAEO方法的性能。对于80个节点,MOCMAEO方法的PDR为99.92%,与现有方法相比,这是很高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Data Dissemination Using Multi Objective Congestion Metric Based Artificial Ecosystem Optimization for Vehicular Ad-Hoc Network
Vehicular Ad-hoc Network (VANET) is a growing technology that utilizes moving vehicles as mobile nodes for exchanging essential information between users. Unlike the conventional radio frequency based VANET, the Visible Light Communication (VLC) is used in the VANET to improve the throughput. However, the road safety is considered as a significant issue for users of VANET. Therefore, congestion-aware routing is required to be developed for enhancing road safety, because it creates a collision between the vehicles that causes packet loss. In this paper, the Multi Objective Congestion Metric based Artificial Ecosystem Optimization (MOCMAEO) is proposed to enhance road safety. The MOCMAEO is used along with the Ad hoc On-Demand Distance Vector (AODV) routing protocol for generating the optimal routing path between the source node to the Road Side Unit (RSU). Specifically, the performance of the MOCMAEO is improved using the multi-objective fitness functions such as congestion metric, residual energy, distance, and some hops. The performance of the MOCMAEO is analyzed by means of Packet Delivery Ratio (PDR), throughput, delay, and Normalized Routing Load (NRL). The PSO based geocast routing protocols such as LARgeoOPT, DREAMgeoOPT, and ZRPgeoOPT are used to evaluate the performance of the MOCMAEO method. The PDR of the MOCMAEO method is 99.92 % for 80 nodes, which is high when compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信