肺声音分类基于MFCC特征

Dody Rafiqo, Yohanes Suyanto, Catur Atmaji
{"title":"肺声音分类基于MFCC特征","authors":"Dody Rafiqo, Yohanes Suyanto, Catur Atmaji","doi":"10.22146/ijeis.70813","DOIUrl":null,"url":null,"abstract":"The lungs are an important organ in the human respiratory system, which functions to exchange carbon dioxide from the blood with oxygen in the air. Detection of respiratory disorders and lung disorders can be done in various ways; view medical records, physical examination, detection by x-ray and also auscultation of breathing. Digital signal processing can be used as a method to detect lung disorders based on the sound produced. In this study, lung sounds were classified into normal, crackle, wheeze, and crackle-wheeze classes using the Mel Frequency Cepstral Coefficient (MFCC) and Convolutional Neural Network (CNN) methods.Observations were made by varying the MFCC feature extraction using MFCC 8 and 13 coefficients, the number of frames are 50 and 60, and the width of the frames used was 0,1, 0,15 and 0,2 seconds. The result of feature extraction is then applied to the CNN classification system, and the confusion matrix is used to get the accuracy and precision values. The highest accuracy and precision values were obtained at 71,85% and 65,70% on the MFCC 13 coefficient with an average of 71,18%. Based on these results, the system that has been created can classify normal lung sounds, crackle, wheeze and crackle-wheeze quite well.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Klasifikasi Suara Paru-Paru Berdasarkan Ciri MFCC\",\"authors\":\"Dody Rafiqo, Yohanes Suyanto, Catur Atmaji\",\"doi\":\"10.22146/ijeis.70813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lungs are an important organ in the human respiratory system, which functions to exchange carbon dioxide from the blood with oxygen in the air. Detection of respiratory disorders and lung disorders can be done in various ways; view medical records, physical examination, detection by x-ray and also auscultation of breathing. Digital signal processing can be used as a method to detect lung disorders based on the sound produced. In this study, lung sounds were classified into normal, crackle, wheeze, and crackle-wheeze classes using the Mel Frequency Cepstral Coefficient (MFCC) and Convolutional Neural Network (CNN) methods.Observations were made by varying the MFCC feature extraction using MFCC 8 and 13 coefficients, the number of frames are 50 and 60, and the width of the frames used was 0,1, 0,15 and 0,2 seconds. The result of feature extraction is then applied to the CNN classification system, and the confusion matrix is used to get the accuracy and precision values. The highest accuracy and precision values were obtained at 71,85% and 65,70% on the MFCC 13 coefficient with an average of 71,18%. Based on these results, the system that has been created can classify normal lung sounds, crackle, wheeze and crackle-wheeze quite well.\",\"PeriodicalId\":31590,\"journal\":{\"name\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijeis.70813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.70813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

肺是人类呼吸系统中的一个重要器官,其功能是将血液中的二氧化碳与空气中的氧气交换。呼吸系统疾病和肺部疾病的检测可以通过各种方式进行;查看病历、体格检查、x线检查以及呼吸听诊。数字信号处理可以用作基于所产生的声音来检测肺部疾病的方法。在本研究中,使用梅尔频率倒谱系数(MFCC)和卷积神经网络(CNN)方法将肺部声音分为正常、爆裂、喘息和爆裂喘息。通过使用MFCC 8和13系数改变MFCC特征提取进行观察,帧数分别为50和60,所用帧的宽度分别为0,15,0,15,0,2秒。然后将特征提取的结果应用于CNN分类系统,并使用混淆矩阵来获得准确度和精度值。MFCC 13系数的最高准确度和精密度分别为71,85%和65,70%,平均值为71,18%。基于这些结果,所建立的系统可以很好地对正常肺部声音、爆裂声、喘息声和爆裂声进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Suara Paru-Paru Berdasarkan Ciri MFCC
The lungs are an important organ in the human respiratory system, which functions to exchange carbon dioxide from the blood with oxygen in the air. Detection of respiratory disorders and lung disorders can be done in various ways; view medical records, physical examination, detection by x-ray and also auscultation of breathing. Digital signal processing can be used as a method to detect lung disorders based on the sound produced. In this study, lung sounds were classified into normal, crackle, wheeze, and crackle-wheeze classes using the Mel Frequency Cepstral Coefficient (MFCC) and Convolutional Neural Network (CNN) methods.Observations were made by varying the MFCC feature extraction using MFCC 8 and 13 coefficients, the number of frames are 50 and 60, and the width of the frames used was 0,1, 0,15 and 0,2 seconds. The result of feature extraction is then applied to the CNN classification system, and the confusion matrix is used to get the accuracy and precision values. The highest accuracy and precision values were obtained at 71,85% and 65,70% on the MFCC 13 coefficient with an average of 71,18%. Based on these results, the system that has been created can classify normal lung sounds, crackle, wheeze and crackle-wheeze quite well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信