关于Ornstein非不等式的Bernstein型定量估计

IF 1.3 2区 数学 Q1 MATHEMATICS
Krystian Kazaniecki, M. Wojciechowski
{"title":"关于Ornstein非不等式的Bernstein型定量估计","authors":"Krystian Kazaniecki, M. Wojciechowski","doi":"10.4171/rmi/1441","DOIUrl":null,"url":null,"abstract":"For the sequence of multi-indexes $\\{\\alpha_i\\}_{i=1}^{m}$ and $\\beta$ we study the inequality \\[ \\|D^{\\beta} f\\|_{L_1(\\mathbb{T}^d)}\\leq K_N \\sum_{j= 1}^{m} \\|D^{\\alpha_j}f\\|_{L_1(\\mathbb{T}^d)}, \\] where $f$ is a trigonometric polynomial of degree at most $N$ on $d$-dimensional torus. Assuming some natural geometric property of the set $\\{\\alpha_j\\}\\cup\\{\\beta\\}$ we show that \\[ K_{N}\\geq C \\left(\\ln N\\right)^{\\phi}, \\] where $\\phi<1$ depends only on the set $\\{\\alpha_j\\}\\cup\\{\\beta\\}$.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Bernstein type quantitative estimates for Ornstein non-inequalities\",\"authors\":\"Krystian Kazaniecki, M. Wojciechowski\",\"doi\":\"10.4171/rmi/1441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the sequence of multi-indexes $\\\\{\\\\alpha_i\\\\}_{i=1}^{m}$ and $\\\\beta$ we study the inequality \\\\[ \\\\|D^{\\\\beta} f\\\\|_{L_1(\\\\mathbb{T}^d)}\\\\leq K_N \\\\sum_{j= 1}^{m} \\\\|D^{\\\\alpha_j}f\\\\|_{L_1(\\\\mathbb{T}^d)}, \\\\] where $f$ is a trigonometric polynomial of degree at most $N$ on $d$-dimensional torus. Assuming some natural geometric property of the set $\\\\{\\\\alpha_j\\\\}\\\\cup\\\\{\\\\beta\\\\}$ we show that \\\\[ K_{N}\\\\geq C \\\\left(\\\\ln N\\\\right)^{\\\\phi}, \\\\] where $\\\\phi<1$ depends only on the set $\\\\{\\\\alpha_j\\\\}\\\\cup\\\\{\\\\beta\\\\}$.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1441\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1441","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于多索引$\{\alpha_i}_{i=1}^{m}$和$\beta$的序列,我们研究了不等式\[\|D^{\beta}f\|_{L_1(\mathbb{T}^D)}\leqK_N\sum_{j=1}^{m}\|D^{\alpha_j}f\ |_{L_1(\ mathbb{T}^D)},其中$f$是$D$维环面上至多$N$的三角多项式。假设集合$\{\alpha_j\}\cup\{\beta\}$的一些自然几何性质,我们证明了\[K_{N}\geqC\left(\ln N\right)^{\phi},\]其中$\phi<1$仅取决于集合$\。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bernstein type quantitative estimates for Ornstein non-inequalities
For the sequence of multi-indexes $\{\alpha_i\}_{i=1}^{m}$ and $\beta$ we study the inequality \[ \|D^{\beta} f\|_{L_1(\mathbb{T}^d)}\leq K_N \sum_{j= 1}^{m} \|D^{\alpha_j}f\|_{L_1(\mathbb{T}^d)}, \] where $f$ is a trigonometric polynomial of degree at most $N$ on $d$-dimensional torus. Assuming some natural geometric property of the set $\{\alpha_j\}\cup\{\beta\}$ we show that \[ K_{N}\geq C \left(\ln N\right)^{\phi}, \] where $\phi<1$ depends only on the set $\{\alpha_j\}\cup\{\beta\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信